Cargando…

Brain information processing capacity modeling

Neurophysiological measurements suggest that human information processing is evinced by neuronal activity. However, the quantitative relationship between the activity of a brain region and its information processing capacity remains unclear. We introduce and validate a mathematical model of the info...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Tongtong, Zheng, Yu, Wang, Zhe, Zhu, David C., Ren, Jian, Liu, Taosheng, Friston, Karl
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828878/
https://www.ncbi.nlm.nih.gov/pubmed/35140253
http://dx.doi.org/10.1038/s41598-022-05870-z
Descripción
Sumario:Neurophysiological measurements suggest that human information processing is evinced by neuronal activity. However, the quantitative relationship between the activity of a brain region and its information processing capacity remains unclear. We introduce and validate a mathematical model of the information processing capacity of a brain region in terms of neuronal activity, input storage capacity, and the arrival rate of afferent information. We applied the model to fMRI data obtained from a flanker paradigm in young and old subjects. Our analysis showed that—for a given cognitive task and subject—higher information processing capacity leads to lower neuronal activity and faster responses. Crucially, processing capacity—as estimated from fMRI data—predicted task and age-related differences in reaction times, speaking to the model’s predictive validity. This model offers a framework for modelling of brain dynamics in terms of information processing capacity, and may be exploited for studies of predictive coding and Bayes-optimal decision-making.