Cargando…
UINMF performs mosaic integration of single-cell multi-omic datasets using nonnegative matrix factorization
Single-cell genomic technologies provide an unprecedented opportunity to define molecular cell types in a data-driven fashion, but present unique data integration challenges. Many analyses require “mosaic integration”, including both features shared across datasets and features exclusive to a single...
Autores principales: | Kriebel, April R., Welch, Joshua D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828882/ https://www.ncbi.nlm.nih.gov/pubmed/35140223 http://dx.doi.org/10.1038/s41467-022-28431-4 |
Ejemplares similares
-
UNMF: a unified nonnegative matrix factorization for multi-dimensional omics data
por: Abe, Ko, et al.
Publicado: (2023) -
Iterative single-cell multi-omic integration using online learning
por: Gao, Chao, et al.
Publicado: (2021) -
Integrative analysis of single-cell genomics data by coupled nonnegative matrix factorizations
por: Duren, Zhana, et al.
Publicado: (2018) -
Advances in Nonnegative Matrix and Tensor Factorization
por: Cichocki, A., et al.
Publicado: (2008) -
Nonnegative Matrix Factorization with Gaussian Process Priors
por: Schmidt, Mikkel N., et al.
Publicado: (2008)