Cargando…
Convolutional mesh autoencoders for the 3-dimensional identification of FGFR-related craniosynostosis
Clinical diagnosis of craniofacial anomalies requires expert knowledge. Recent studies have shown that artificial intelligence (AI) based facial analysis can match the diagnostic capabilities of expert clinicians in syndrome identification. In general, these systems use 2D images and analyse texture...
Autores principales: | O’ Sullivan, Eimear, van de Lande, Lara S., Papaioannou, Athanasios, Breakey, Richard W. F., Jeelani, N. Owase, Ponniah, Allan, Duncan, Christian, Schievano, Silvia, Khonsari, Roman H., Zafeiriou, Stefanos, Dunaway, David. J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828904/ https://www.ncbi.nlm.nih.gov/pubmed/35140239 http://dx.doi.org/10.1038/s41598-021-02411-y |
Ejemplares similares
-
The 3D skull 0–4 years: A validated, generative, statistical shape model
por: O' Sullivan, Eimear, et al.
Publicado: (2021) -
Computational modelling of patient specific spring assisted lambdoid craniosynostosis correction
por: Bozkurt, Selim, et al.
Publicado: (2020) -
A machine learning framework for automated diagnosis and computer-assisted planning in plastic and reconstructive surgery
por: Knoops, Paul G. M., et al.
Publicado: (2019) -
Growth patterns and shape development of the paediatric mandible – A 3D statistical model
por: O' Sullivan, Eimear, et al.
Publicado: (2022) -
A population-specific material model for sagittal craniosynostosis to predict surgical shape outcomes
por: Borghi, Alessandro, et al.
Publicado: (2019)