Cargando…
Code-Free Development and Deployment of Deep Segmentation Models for Digital Pathology
Application of deep learning on histopathological whole slide images (WSIs) holds promise of improving diagnostic efficiency and reproducibility but is largely dependent on the ability to write computer code or purchase commercial solutions. We present a code-free pipeline utilizing free-to-use, ope...
Autores principales: | Pettersen, Henrik Sahlin, Belevich, Ilya, Røyset, Elin Synnøve, Smistad, Erik, Simpson, Melanie Rae, Jokitalo, Eija, Reinertsen, Ingerid, Bakke, Ingunn, Pedersen, André |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8829033/ https://www.ncbi.nlm.nih.gov/pubmed/35155486 http://dx.doi.org/10.3389/fmed.2021.816281 |
Ejemplares similares
-
DeepMIB: User-friendly and open-source software for training of deep learning network for biological image segmentation
por: Belevich, Ilya, et al.
Publicado: (2021) -
Deep learning‐based image analysis reveals significant differences in the number and distribution of mucosal CD3 and γδ T cells between Crohn's disease and ulcerative colitis
por: Røyset, Elin Synnøve, et al.
Publicado: (2022) -
H2G-Net: A multi-resolution refinement approach for segmentation of breast cancer region in gigapixel histopathological images
por: Pedersen, André, et al.
Publicado: (2022) -
Microscopy Image Browser: A Platform for Segmentation and Analysis of Multidimensional Datasets
por: Belevich, Ilya, et al.
Publicado: (2016) -
DeepACSON automated segmentation of white matter in 3D electron microscopy
por: Abdollahzadeh, Ali, et al.
Publicado: (2021)