Cargando…
An Integrative Network Approach to Identify Common Genes for the Therapeutics in Tuberculosis and Its Overlapping Non-Communicable Diseases
Tuberculosis (TB) is the leading cause of death from a single infectious agent. The estimated total global TB deaths in 2019 were 1.4 million. The decline in TB incidence rate is very slow, while the burden of noncommunicable diseases (NCDs) is exponentially increasing in low- and middle-income coun...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8829040/ https://www.ncbi.nlm.nih.gov/pubmed/35153741 http://dx.doi.org/10.3389/fphar.2021.770762 |
_version_ | 1784647980693848064 |
---|---|
author | Alam, Aftab Abubaker Bagabir, Hala Sultan, Armiya Siddiqui, Mohd Faizan Imam, Nikhat Alkhanani, Mustfa F Alsulimani, Ahmad Haque, Shafiul Ishrat, Romana |
author_facet | Alam, Aftab Abubaker Bagabir, Hala Sultan, Armiya Siddiqui, Mohd Faizan Imam, Nikhat Alkhanani, Mustfa F Alsulimani, Ahmad Haque, Shafiul Ishrat, Romana |
author_sort | Alam, Aftab |
collection | PubMed |
description | Tuberculosis (TB) is the leading cause of death from a single infectious agent. The estimated total global TB deaths in 2019 were 1.4 million. The decline in TB incidence rate is very slow, while the burden of noncommunicable diseases (NCDs) is exponentially increasing in low- and middle-income countries, where the prevention and treatment of TB disease remains a great burden, and there is enough empirical evidence (scientific evidence) to justify a greater research emphasis on the syndemic interaction between TB and NCDs. The current study was proposed to build a disease-gene network based on overlapping TB with NCDs (overlapping means genes involved in TB and other/s NCDs), such as Parkinson’s disease, cardiovascular disease, diabetes mellitus, rheumatoid arthritis, and lung cancer. We compared the TB-associated genes with genes of its overlapping NCDs to determine the gene-disease relationship. Next, we constructed the gene interaction network of disease-genes by integrating curated and experimentally validated interactions in humans and find the 13 highly clustered modules in the network, which contains a total of 86 hub genes that are commonly associated with TB and its overlapping NCDs, which are largely involved in the Inflammatory response, cellular response to cytokine stimulus, response to cytokine, cytokine-mediated signaling pathway, defense response, response to stress and immune system process. Moreover, the identified hub genes and their respective drugs were exploited to build a bipartite network that assists in deciphering the drug-target interaction, highlighting the influential roles of these drugs on apparently unrelated targets and pathways. Targeting these hub proteins by using drugs combination or drug repurposing approaches will improve the clinical conditions in comorbidity, enhance the potency of a few drugs, and give a synergistic effect with better outcomes. Thus, understanding the Mycobacterium tuberculosis (Mtb) infection and associated NCDs is a high priority to contain its short and long-term effects on human health. Our network-based analysis opens a new horizon for more personalized treatment, drug-repurposing opportunities, investigates new targets, multidrug treatment, and can uncover several side effects of unrelated drugs for TB and its overlapping NCDs. |
format | Online Article Text |
id | pubmed-8829040 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-88290402022-02-11 An Integrative Network Approach to Identify Common Genes for the Therapeutics in Tuberculosis and Its Overlapping Non-Communicable Diseases Alam, Aftab Abubaker Bagabir, Hala Sultan, Armiya Siddiqui, Mohd Faizan Imam, Nikhat Alkhanani, Mustfa F Alsulimani, Ahmad Haque, Shafiul Ishrat, Romana Front Pharmacol Pharmacology Tuberculosis (TB) is the leading cause of death from a single infectious agent. The estimated total global TB deaths in 2019 were 1.4 million. The decline in TB incidence rate is very slow, while the burden of noncommunicable diseases (NCDs) is exponentially increasing in low- and middle-income countries, where the prevention and treatment of TB disease remains a great burden, and there is enough empirical evidence (scientific evidence) to justify a greater research emphasis on the syndemic interaction between TB and NCDs. The current study was proposed to build a disease-gene network based on overlapping TB with NCDs (overlapping means genes involved in TB and other/s NCDs), such as Parkinson’s disease, cardiovascular disease, diabetes mellitus, rheumatoid arthritis, and lung cancer. We compared the TB-associated genes with genes of its overlapping NCDs to determine the gene-disease relationship. Next, we constructed the gene interaction network of disease-genes by integrating curated and experimentally validated interactions in humans and find the 13 highly clustered modules in the network, which contains a total of 86 hub genes that are commonly associated with TB and its overlapping NCDs, which are largely involved in the Inflammatory response, cellular response to cytokine stimulus, response to cytokine, cytokine-mediated signaling pathway, defense response, response to stress and immune system process. Moreover, the identified hub genes and their respective drugs were exploited to build a bipartite network that assists in deciphering the drug-target interaction, highlighting the influential roles of these drugs on apparently unrelated targets and pathways. Targeting these hub proteins by using drugs combination or drug repurposing approaches will improve the clinical conditions in comorbidity, enhance the potency of a few drugs, and give a synergistic effect with better outcomes. Thus, understanding the Mycobacterium tuberculosis (Mtb) infection and associated NCDs is a high priority to contain its short and long-term effects on human health. Our network-based analysis opens a new horizon for more personalized treatment, drug-repurposing opportunities, investigates new targets, multidrug treatment, and can uncover several side effects of unrelated drugs for TB and its overlapping NCDs. Frontiers Media S.A. 2022-01-27 /pmc/articles/PMC8829040/ /pubmed/35153741 http://dx.doi.org/10.3389/fphar.2021.770762 Text en Copyright © 2022 Alam, Abubaker Bagabir, Sultan, Siddiqui, Imam, Alkhanani, Alsulimani, Haque and Ishrat. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Pharmacology Alam, Aftab Abubaker Bagabir, Hala Sultan, Armiya Siddiqui, Mohd Faizan Imam, Nikhat Alkhanani, Mustfa F Alsulimani, Ahmad Haque, Shafiul Ishrat, Romana An Integrative Network Approach to Identify Common Genes for the Therapeutics in Tuberculosis and Its Overlapping Non-Communicable Diseases |
title | An Integrative Network Approach to Identify Common Genes for the Therapeutics in Tuberculosis and Its Overlapping Non-Communicable Diseases |
title_full | An Integrative Network Approach to Identify Common Genes for the Therapeutics in Tuberculosis and Its Overlapping Non-Communicable Diseases |
title_fullStr | An Integrative Network Approach to Identify Common Genes for the Therapeutics in Tuberculosis and Its Overlapping Non-Communicable Diseases |
title_full_unstemmed | An Integrative Network Approach to Identify Common Genes for the Therapeutics in Tuberculosis and Its Overlapping Non-Communicable Diseases |
title_short | An Integrative Network Approach to Identify Common Genes for the Therapeutics in Tuberculosis and Its Overlapping Non-Communicable Diseases |
title_sort | integrative network approach to identify common genes for the therapeutics in tuberculosis and its overlapping non-communicable diseases |
topic | Pharmacology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8829040/ https://www.ncbi.nlm.nih.gov/pubmed/35153741 http://dx.doi.org/10.3389/fphar.2021.770762 |
work_keys_str_mv | AT alamaftab anintegrativenetworkapproachtoidentifycommongenesforthetherapeuticsintuberculosisanditsoverlappingnoncommunicablediseases AT abubakerbagabirhala anintegrativenetworkapproachtoidentifycommongenesforthetherapeuticsintuberculosisanditsoverlappingnoncommunicablediseases AT sultanarmiya anintegrativenetworkapproachtoidentifycommongenesforthetherapeuticsintuberculosisanditsoverlappingnoncommunicablediseases AT siddiquimohdfaizan anintegrativenetworkapproachtoidentifycommongenesforthetherapeuticsintuberculosisanditsoverlappingnoncommunicablediseases AT imamnikhat anintegrativenetworkapproachtoidentifycommongenesforthetherapeuticsintuberculosisanditsoverlappingnoncommunicablediseases AT alkhananimustfaf anintegrativenetworkapproachtoidentifycommongenesforthetherapeuticsintuberculosisanditsoverlappingnoncommunicablediseases AT alsulimaniahmad anintegrativenetworkapproachtoidentifycommongenesforthetherapeuticsintuberculosisanditsoverlappingnoncommunicablediseases AT haqueshafiul anintegrativenetworkapproachtoidentifycommongenesforthetherapeuticsintuberculosisanditsoverlappingnoncommunicablediseases AT ishratromana anintegrativenetworkapproachtoidentifycommongenesforthetherapeuticsintuberculosisanditsoverlappingnoncommunicablediseases AT alamaftab integrativenetworkapproachtoidentifycommongenesforthetherapeuticsintuberculosisanditsoverlappingnoncommunicablediseases AT abubakerbagabirhala integrativenetworkapproachtoidentifycommongenesforthetherapeuticsintuberculosisanditsoverlappingnoncommunicablediseases AT sultanarmiya integrativenetworkapproachtoidentifycommongenesforthetherapeuticsintuberculosisanditsoverlappingnoncommunicablediseases AT siddiquimohdfaizan integrativenetworkapproachtoidentifycommongenesforthetherapeuticsintuberculosisanditsoverlappingnoncommunicablediseases AT imamnikhat integrativenetworkapproachtoidentifycommongenesforthetherapeuticsintuberculosisanditsoverlappingnoncommunicablediseases AT alkhananimustfaf integrativenetworkapproachtoidentifycommongenesforthetherapeuticsintuberculosisanditsoverlappingnoncommunicablediseases AT alsulimaniahmad integrativenetworkapproachtoidentifycommongenesforthetherapeuticsintuberculosisanditsoverlappingnoncommunicablediseases AT haqueshafiul integrativenetworkapproachtoidentifycommongenesforthetherapeuticsintuberculosisanditsoverlappingnoncommunicablediseases AT ishratromana integrativenetworkapproachtoidentifycommongenesforthetherapeuticsintuberculosisanditsoverlappingnoncommunicablediseases |