Cargando…
An Augmented High-Dimensional Graphical Lasso Method to Incorporate Prior Biological Knowledge for Global Network Learning
Biological networks are often inferred through Gaussian graphical models (GGMs) using gene or protein expression data only. GGMs identify conditional dependence by estimating a precision matrix between genes or proteins. However, conventional GGM approaches often ignore prior knowledge about protein...
Autores principales: | Zhuang, Yonghua, Xing, Fuyong, Ghosh, Debashis, Banaei-Kashani, Farnoush, Bowler, Russell P., Kechris, Katerina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8829118/ https://www.ncbi.nlm.nih.gov/pubmed/35154240 http://dx.doi.org/10.3389/fgene.2021.760299 |
Ejemplares similares
-
Deep learning on graphs for multi-omics classification of COPD
por: Zhuang, Yonghua, et al.
Publicado: (2023) -
Significant Subgraph Detection in Multi-omics Networks for Disease Pathway Identification
por: Abdel-Hafiz, Mohamed, et al.
Publicado: (2022) -
Weighted Fused Pathway Graphical Lasso for Joint Estimation of Multiple Gene Networks
por: Wu, Nuosi, et al.
Publicado: (2019) -
NetSHy: network summarization via a hybrid approach leveraging topological properties
por: Vu, Thao, et al.
Publicado: (2022) -
Multi-omics subtyping pipeline for chronic obstructive pulmonary disease
por: Gillenwater, Lucas A., et al.
Publicado: (2021)