Cargando…

Histone Deacetylation Controls Xylem Vessel Cell Differentiation via Transcriptional Regulation of a Transcription Repressor Complex OFP1/4–MYB75–KNAT7–BLH6

Xylem vessels are indispensable tissues in vascular plants that transport water and minerals. The differentiation of xylem vessel cells is characterized by secondary cell wall deposition and programmed cell death. These processes are initiated by a specific set of transcription factors, called VASCU...

Descripción completa

Detalles Bibliográficos
Autores principales: Hirai, Risaku, Wang, Shumin, Demura, Taku, Ohtani, Misato
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8829346/
https://www.ncbi.nlm.nih.gov/pubmed/35154217
http://dx.doi.org/10.3389/fpls.2021.825810
_version_ 1784648058587316224
author Hirai, Risaku
Wang, Shumin
Demura, Taku
Ohtani, Misato
author_facet Hirai, Risaku
Wang, Shumin
Demura, Taku
Ohtani, Misato
author_sort Hirai, Risaku
collection PubMed
description Xylem vessels are indispensable tissues in vascular plants that transport water and minerals. The differentiation of xylem vessel cells is characterized by secondary cell wall deposition and programmed cell death. These processes are initiated by a specific set of transcription factors, called VASCULAR-RELATED NAC-DOMAIN (VND) family proteins, through the direct and/or indirectly induction of genes required for secondary cell wall deposition and programmed cell death. In this study, we explored novel regulatory factors for xylem vessel cell differentiation in Arabidopsis thaliana. We tested the effects of cellular stress inducers on VND7-induced differentiation of xylem vessel cells with the VND7–VP16–GR system, in which VND7 activity is post-translationally induced by dexamethasone application. We established that the histone deacetylase (HDAC) inhibitors trichostatin A (TSA) and sirtinol inhibited VND7-induced xylem vessel cell differentiation. The inhibitory effects of TSA and sirtinol treatment were detected only when they were added at the same time as the dexamethasone application, suggesting that TSA and sirtinol mainly influence the early stages of xylem vessel cell differentiation. Expression analysis revealed that these HDAC inhibitors downregulated VND7-downstream genes, including both direct and indirect targets of transcriptional activation. Notably, the HDAC inhibitors upregulated the transcript levels of negative regulators of xylem vessel cells, OVATE FAMILY PROTEIN1 (OFP1), OFP4, and MYB75, which are known to form a protein complex with BEL1-LIKE HOMEODOMAIN6 (BLH6) to repress gene transcription. The KDB system, another in vitro induction system of ectopic xylem vessel cells, demonstrated that TSA and sirtinol also inhibited ectopic formation of xylem vessel cells, and this inhibition was partially suppressed in knat7-1, bhl6-1, knat7-1 bhl6-1, and quintuple ofp1 ofp2 ofp3 ofp4 ofp5 mutants. Thus, the negative effects of HDAC inhibitors on xylem vessel cell differentiation are mediated, at least partly, by the abnormal upregulation of the transcriptional repressor complex OFP1/4–MYB75–KNAT7–BLH6. Collectively, our findings suggest that active regulation of histone deacetylation by HDACs is involved in xylem vessel cell differentiation via the OFP1/4–MYB75–KNAT7–BLH6 complex.
format Online
Article
Text
id pubmed-8829346
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-88293462022-02-11 Histone Deacetylation Controls Xylem Vessel Cell Differentiation via Transcriptional Regulation of a Transcription Repressor Complex OFP1/4–MYB75–KNAT7–BLH6 Hirai, Risaku Wang, Shumin Demura, Taku Ohtani, Misato Front Plant Sci Plant Science Xylem vessels are indispensable tissues in vascular plants that transport water and minerals. The differentiation of xylem vessel cells is characterized by secondary cell wall deposition and programmed cell death. These processes are initiated by a specific set of transcription factors, called VASCULAR-RELATED NAC-DOMAIN (VND) family proteins, through the direct and/or indirectly induction of genes required for secondary cell wall deposition and programmed cell death. In this study, we explored novel regulatory factors for xylem vessel cell differentiation in Arabidopsis thaliana. We tested the effects of cellular stress inducers on VND7-induced differentiation of xylem vessel cells with the VND7–VP16–GR system, in which VND7 activity is post-translationally induced by dexamethasone application. We established that the histone deacetylase (HDAC) inhibitors trichostatin A (TSA) and sirtinol inhibited VND7-induced xylem vessel cell differentiation. The inhibitory effects of TSA and sirtinol treatment were detected only when they were added at the same time as the dexamethasone application, suggesting that TSA and sirtinol mainly influence the early stages of xylem vessel cell differentiation. Expression analysis revealed that these HDAC inhibitors downregulated VND7-downstream genes, including both direct and indirect targets of transcriptional activation. Notably, the HDAC inhibitors upregulated the transcript levels of negative regulators of xylem vessel cells, OVATE FAMILY PROTEIN1 (OFP1), OFP4, and MYB75, which are known to form a protein complex with BEL1-LIKE HOMEODOMAIN6 (BLH6) to repress gene transcription. The KDB system, another in vitro induction system of ectopic xylem vessel cells, demonstrated that TSA and sirtinol also inhibited ectopic formation of xylem vessel cells, and this inhibition was partially suppressed in knat7-1, bhl6-1, knat7-1 bhl6-1, and quintuple ofp1 ofp2 ofp3 ofp4 ofp5 mutants. Thus, the negative effects of HDAC inhibitors on xylem vessel cell differentiation are mediated, at least partly, by the abnormal upregulation of the transcriptional repressor complex OFP1/4–MYB75–KNAT7–BLH6. Collectively, our findings suggest that active regulation of histone deacetylation by HDACs is involved in xylem vessel cell differentiation via the OFP1/4–MYB75–KNAT7–BLH6 complex. Frontiers Media S.A. 2022-01-27 /pmc/articles/PMC8829346/ /pubmed/35154217 http://dx.doi.org/10.3389/fpls.2021.825810 Text en Copyright © 2022 Hirai, Wang, Demura and Ohtani. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
Hirai, Risaku
Wang, Shumin
Demura, Taku
Ohtani, Misato
Histone Deacetylation Controls Xylem Vessel Cell Differentiation via Transcriptional Regulation of a Transcription Repressor Complex OFP1/4–MYB75–KNAT7–BLH6
title Histone Deacetylation Controls Xylem Vessel Cell Differentiation via Transcriptional Regulation of a Transcription Repressor Complex OFP1/4–MYB75–KNAT7–BLH6
title_full Histone Deacetylation Controls Xylem Vessel Cell Differentiation via Transcriptional Regulation of a Transcription Repressor Complex OFP1/4–MYB75–KNAT7–BLH6
title_fullStr Histone Deacetylation Controls Xylem Vessel Cell Differentiation via Transcriptional Regulation of a Transcription Repressor Complex OFP1/4–MYB75–KNAT7–BLH6
title_full_unstemmed Histone Deacetylation Controls Xylem Vessel Cell Differentiation via Transcriptional Regulation of a Transcription Repressor Complex OFP1/4–MYB75–KNAT7–BLH6
title_short Histone Deacetylation Controls Xylem Vessel Cell Differentiation via Transcriptional Regulation of a Transcription Repressor Complex OFP1/4–MYB75–KNAT7–BLH6
title_sort histone deacetylation controls xylem vessel cell differentiation via transcriptional regulation of a transcription repressor complex ofp1/4–myb75–knat7–blh6
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8829346/
https://www.ncbi.nlm.nih.gov/pubmed/35154217
http://dx.doi.org/10.3389/fpls.2021.825810
work_keys_str_mv AT hirairisaku histonedeacetylationcontrolsxylemvesselcelldifferentiationviatranscriptionalregulationofatranscriptionrepressorcomplexofp14myb75knat7blh6
AT wangshumin histonedeacetylationcontrolsxylemvesselcelldifferentiationviatranscriptionalregulationofatranscriptionrepressorcomplexofp14myb75knat7blh6
AT demurataku histonedeacetylationcontrolsxylemvesselcelldifferentiationviatranscriptionalregulationofatranscriptionrepressorcomplexofp14myb75knat7blh6
AT ohtanimisato histonedeacetylationcontrolsxylemvesselcelldifferentiationviatranscriptionalregulationofatranscriptionrepressorcomplexofp14myb75knat7blh6