Cargando…

Solutions to problems of nonexistence of parameter estimates and sparse data bias in Poisson regression

Poisson regression can be challenging with sparse data, in particular with certain data constellations where maximum likelihood estimates of regression coefficients do not exist. This paper provides a comprehensive evaluation of methods that give finite regression coefficients when maximum likelihoo...

Descripción completa

Detalles Bibliográficos
Autores principales: Joshi, Ashwini, Geroldinger, Angelika, Jiricka, Lena, Senchaudhuri, Pralay, Corcoran, Christopher, Heinze, Georg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8829730/
https://www.ncbi.nlm.nih.gov/pubmed/34931909
http://dx.doi.org/10.1177/09622802211065405
_version_ 1784648133755535360
author Joshi, Ashwini
Geroldinger, Angelika
Jiricka, Lena
Senchaudhuri, Pralay
Corcoran, Christopher
Heinze, Georg
author_facet Joshi, Ashwini
Geroldinger, Angelika
Jiricka, Lena
Senchaudhuri, Pralay
Corcoran, Christopher
Heinze, Georg
author_sort Joshi, Ashwini
collection PubMed
description Poisson regression can be challenging with sparse data, in particular with certain data constellations where maximum likelihood estimates of regression coefficients do not exist. This paper provides a comprehensive evaluation of methods that give finite regression coefficients when maximum likelihood estimates do not exist, including Firth’s general approach to bias reduction, exact conditional Poisson regression, and a Bayesian estimator using weakly informative priors that can be obtained via data augmentation. Furthermore, we include in our evaluation a new proposal for a modification of Firth’s approach, improving its performance for predictions without compromising its attractive bias-correcting properties for regression coefficients. We illustrate the issue of the nonexistence of maximum likelihood estimates with a dataset arising from the recent outbreak of COVID-19 and an example from implant dentistry. All methods are evaluated in a comprehensive simulation study under a variety of realistic scenarios, evaluating their performance for prediction and estimation. To conclude, while exact conditional Poisson regression may be confined to small data sets only, both the modification of Firth’s approach and the Bayesian estimator are universally applicable solutions with attractive properties for prediction and estimation. While the Bayesian method needs specification of prior variances for the regression coefficients, the modified Firth approach does not require any user input.
format Online
Article
Text
id pubmed-8829730
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-88297302022-02-11 Solutions to problems of nonexistence of parameter estimates and sparse data bias in Poisson regression Joshi, Ashwini Geroldinger, Angelika Jiricka, Lena Senchaudhuri, Pralay Corcoran, Christopher Heinze, Georg Stat Methods Med Res Original Research Articles Poisson regression can be challenging with sparse data, in particular with certain data constellations where maximum likelihood estimates of regression coefficients do not exist. This paper provides a comprehensive evaluation of methods that give finite regression coefficients when maximum likelihood estimates do not exist, including Firth’s general approach to bias reduction, exact conditional Poisson regression, and a Bayesian estimator using weakly informative priors that can be obtained via data augmentation. Furthermore, we include in our evaluation a new proposal for a modification of Firth’s approach, improving its performance for predictions without compromising its attractive bias-correcting properties for regression coefficients. We illustrate the issue of the nonexistence of maximum likelihood estimates with a dataset arising from the recent outbreak of COVID-19 and an example from implant dentistry. All methods are evaluated in a comprehensive simulation study under a variety of realistic scenarios, evaluating their performance for prediction and estimation. To conclude, while exact conditional Poisson regression may be confined to small data sets only, both the modification of Firth’s approach and the Bayesian estimator are universally applicable solutions with attractive properties for prediction and estimation. While the Bayesian method needs specification of prior variances for the regression coefficients, the modified Firth approach does not require any user input. SAGE Publications 2021-12-21 2022-02 /pmc/articles/PMC8829730/ /pubmed/34931909 http://dx.doi.org/10.1177/09622802211065405 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Original Research Articles
Joshi, Ashwini
Geroldinger, Angelika
Jiricka, Lena
Senchaudhuri, Pralay
Corcoran, Christopher
Heinze, Georg
Solutions to problems of nonexistence of parameter estimates and sparse data bias in Poisson regression
title Solutions to problems of nonexistence of parameter estimates and sparse data bias in Poisson regression
title_full Solutions to problems of nonexistence of parameter estimates and sparse data bias in Poisson regression
title_fullStr Solutions to problems of nonexistence of parameter estimates and sparse data bias in Poisson regression
title_full_unstemmed Solutions to problems of nonexistence of parameter estimates and sparse data bias in Poisson regression
title_short Solutions to problems of nonexistence of parameter estimates and sparse data bias in Poisson regression
title_sort solutions to problems of nonexistence of parameter estimates and sparse data bias in poisson regression
topic Original Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8829730/
https://www.ncbi.nlm.nih.gov/pubmed/34931909
http://dx.doi.org/10.1177/09622802211065405
work_keys_str_mv AT joshiashwini solutionstoproblemsofnonexistenceofparameterestimatesandsparsedatabiasinpoissonregression
AT geroldingerangelika solutionstoproblemsofnonexistenceofparameterestimatesandsparsedatabiasinpoissonregression
AT jirickalena solutionstoproblemsofnonexistenceofparameterestimatesandsparsedatabiasinpoissonregression
AT senchaudhuripralay solutionstoproblemsofnonexistenceofparameterestimatesandsparsedatabiasinpoissonregression
AT corcoranchristopher solutionstoproblemsofnonexistenceofparameterestimatesandsparsedatabiasinpoissonregression
AT heinzegeorg solutionstoproblemsofnonexistenceofparameterestimatesandsparsedatabiasinpoissonregression