Cargando…
Solutions to problems of nonexistence of parameter estimates and sparse data bias in Poisson regression
Poisson regression can be challenging with sparse data, in particular with certain data constellations where maximum likelihood estimates of regression coefficients do not exist. This paper provides a comprehensive evaluation of methods that give finite regression coefficients when maximum likelihoo...
Autores principales: | Joshi, Ashwini, Geroldinger, Angelika, Jiricka, Lena, Senchaudhuri, Pralay, Corcoran, Christopher, Heinze, Georg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8829730/ https://www.ncbi.nlm.nih.gov/pubmed/34931909 http://dx.doi.org/10.1177/09622802211065405 |
Ejemplares similares
-
To tune or not to tune, a case study of ridge logistic regression in small or sparse datasets
por: Šinkovec, Hana, et al.
Publicado: (2021) -
Sparse Poisson regression via mixed-integer optimization
por: Saishu, Hiroki, et al.
Publicado: (2021) -
Bring More Data!—A Good Advice? Removing Separation in Logistic Regression by Increasing Sample Size
por: Šinkovec, Hana, et al.
Publicado: (2019) -
Nonexistence of global solutions of abstract wave equations with high energies
por: Esquivel-Avila, Jorge A
Publicado: (2017) -
Leave-one-out cross-validation, penalization, and differential bias of some prediction model performance measures—a simulation study
por: Geroldinger, Angelika, et al.
Publicado: (2023)