Cargando…
On estimating a constrained bivariate random effects model for meta-analysis of test accuracy studies
Tailored meta-analysis uses setting-specific knowledge for the test positive rate and disease prevalence to constrain the possible values for a test's sensitivity and specificity. The constrained region is used to select those studies relevant to the setting for meta-analysis using an unconstra...
Autores principales: | Baragilly, Mohammed, Willis, Brian Harvey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8829734/ https://www.ncbi.nlm.nih.gov/pubmed/34994667 http://dx.doi.org/10.1177/09622802211065157 |
Ejemplares similares
-
Maximum likelihood estimation based on Newton–Raphson iteration for
the bivariate random effects model in test accuracy
meta-analysis
por: Willis, Brian H, et al.
Publicado: (2019) -
Overconfident results with the bivariate random effects model for meta‐analysis of diagnostic accuracy studies
por: Furuya‐Kanamori, Luis, et al.
Publicado: (2022) -
Latent class bivariate model for the meta-analysis of diagnostic test accuracy studies
por: Eusebi, Paolo, et al.
Publicado: (2014) -
Tailored meta-analysis: an investigation of the correlation between the test positive rate and prevalence
por: Willis, Brian H., et al.
Publicado: (2019) -
Bivariate random-effects meta-analysis and the estimation of between-study correlation
por: Riley, Richard D, et al.
Publicado: (2007)