Cargando…
Toward modeling metabolic state from single-cell transcriptomics
BACKGROUND: Single-cell metabolic studies bring new insights into cellular function, which can often not be captured on other omics layers. Metabolic information has wide applicability, such as for the study of cellular heterogeneity or for the understanding of drug mechanisms and biomarker developm...
Autores principales: | Hrovatin, Karin, Fischer, David S., Theis, Fabian J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8829761/ https://www.ncbi.nlm.nih.gov/pubmed/34785394 http://dx.doi.org/10.1016/j.molmet.2021.101396 |
Ejemplares similares
-
Integrating single-cell RNA-seq datasets with substantial batch effects
por: Hrovatin, Karin, et al.
Publicado: (2023) -
Biologically informed deep learning to query gene programs in single-cell atlases
por: Lotfollahi, Mohammad, et al.
Publicado: (2023) -
Delineating mouse β-cell identity during lifetime and in diabetes with a single cell atlas
por: Hrovatin, Karin, et al.
Publicado: (2023) -
Scaling cross-tissue single-cell annotation models
por: Fischer, Felix, et al.
Publicado: (2023) -
Genetic sex determination assays in 53 mammalian species: Literature analysis and guidelines for reporting standardization
por: Hrovatin, Karin, et al.
Publicado: (2017)