Cargando…
Predicting Segregation Energy in Single Atom Alloys Using Physics and Machine Learning
[Image: see text] Single atom alloys (SAAs) show great promise as catalysts for a wide variety of reactions due to their tunable properties, which can enhance the catalytic activity and selectivity. To design SAAs, it is imperative for the heterometal dopant to be stable on the surface as an active...
Autores principales: | Salem, Maya, Cowan, Michael J., Mpourmpakis, Giannis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8830057/ https://www.ncbi.nlm.nih.gov/pubmed/35155939 http://dx.doi.org/10.1021/acsomega.1c06337 |
Ejemplares similares
-
Single Atom Alloys Segregation in the Presence of
Ligands
por: Salem, Maya, et al.
Publicado: (2023) -
Structure–property relationships on thiolate-protected gold nanoclusters
por: Cowan, Michael J., et al.
Publicado: (2018) -
Efficient machine learning of solute segregation energy based on physics-informed features
por: Ma, Zongyi, et al.
Publicado: (2023) -
Modeling of molecular atomization energies using machine learning
por: Rupp, Matthias, et al.
Publicado: (2012) -
Direct observation and impact of co-segregated atoms in magnesium having multiple alloying elements
por: Zhao, Xiaojun, et al.
Publicado: (2019)