Cargando…
Morphology-Based Deep Learning Approach for Predicting Osteogenic Differentiation
Early, high-throughput, and accurate recognition of osteogenic differentiation of stem cells is urgently required in stem cell therapy, tissue engineering, and regenerative medicine. In this study, we established an automatic deep learning algorithm, i.e., osteogenic convolutional neural network (OC...
Autores principales: | Lan, Yiqing, Huang, Nannan, Fu, Yiru, Liu, Kehao, Zhang, He, Li, Yuzhou, Yang, Sheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8830423/ https://www.ncbi.nlm.nih.gov/pubmed/35155409 http://dx.doi.org/10.3389/fbioe.2021.802794 |
Ejemplares similares
-
Study on the influence of scaffold morphology and structure on osteogenic performance
por: Zhou, Jingyu, et al.
Publicado: (2023) -
DeepSnap-Deep Learning Approach Predicts Progesterone Receptor Antagonist Activity With High Performance
por: Matsuzaka, Yasunari, et al.
Publicado: (2020) -
Proliferation and Osteogenic Differentiation of hMSCs on Biomineralized Collagen
por: de Melo Pereira, Daniel, et al.
Publicado: (2020) -
Notch signaling and fluid shear stress in regulating osteogenic differentiation
por: Zhao, Yuwen, et al.
Publicado: (2022) -
Cathelicidin LL37 Promotes Osteogenic Differentiation in vitro and Bone Regeneration in vivo
por: Li, Lunhao, et al.
Publicado: (2021)