Cargando…

Invariant Measures for the Stochastic One-Dimensional Compressible Navier–Stokes Equations

We investigate the long-time behavior of solutions to a stochastically forced one-dimensional Navier–Stokes system, describing the motion of a compressible viscous fluid, in the case of linear pressure law. We prove existence of an invariant measure for the Markov process generated by strong solutio...

Descripción completa

Detalles Bibliográficos
Autores principales: Coti Zelati, Michele, Glatt-Holtz, Nathan, Trivisa, Konstantina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8830535/
https://www.ncbi.nlm.nih.gov/pubmed/35210656
http://dx.doi.org/10.1007/s00245-019-09594-x
Descripción
Sumario:We investigate the long-time behavior of solutions to a stochastically forced one-dimensional Navier–Stokes system, describing the motion of a compressible viscous fluid, in the case of linear pressure law. We prove existence of an invariant measure for the Markov process generated by strong solutions. We overcome the difficulties of working with non-Feller Markov semigroups on non-complete metric spaces by generalizing the classical Krylov–Bogoliubov method, and by providing suitable polynomial and exponential moment bounds on the solution, together with pathwise estimates.