Cargando…

Invariant Measures for the Stochastic One-Dimensional Compressible Navier–Stokes Equations

We investigate the long-time behavior of solutions to a stochastically forced one-dimensional Navier–Stokes system, describing the motion of a compressible viscous fluid, in the case of linear pressure law. We prove existence of an invariant measure for the Markov process generated by strong solutio...

Descripción completa

Detalles Bibliográficos
Autores principales: Coti Zelati, Michele, Glatt-Holtz, Nathan, Trivisa, Konstantina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8830535/
https://www.ncbi.nlm.nih.gov/pubmed/35210656
http://dx.doi.org/10.1007/s00245-019-09594-x
_version_ 1784648294050299904
author Coti Zelati, Michele
Glatt-Holtz, Nathan
Trivisa, Konstantina
author_facet Coti Zelati, Michele
Glatt-Holtz, Nathan
Trivisa, Konstantina
author_sort Coti Zelati, Michele
collection PubMed
description We investigate the long-time behavior of solutions to a stochastically forced one-dimensional Navier–Stokes system, describing the motion of a compressible viscous fluid, in the case of linear pressure law. We prove existence of an invariant measure for the Markov process generated by strong solutions. We overcome the difficulties of working with non-Feller Markov semigroups on non-complete metric spaces by generalizing the classical Krylov–Bogoliubov method, and by providing suitable polynomial and exponential moment bounds on the solution, together with pathwise estimates.
format Online
Article
Text
id pubmed-8830535
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-88305352022-02-22 Invariant Measures for the Stochastic One-Dimensional Compressible Navier–Stokes Equations Coti Zelati, Michele Glatt-Holtz, Nathan Trivisa, Konstantina Appl Math Optim Article We investigate the long-time behavior of solutions to a stochastically forced one-dimensional Navier–Stokes system, describing the motion of a compressible viscous fluid, in the case of linear pressure law. We prove existence of an invariant measure for the Markov process generated by strong solutions. We overcome the difficulties of working with non-Feller Markov semigroups on non-complete metric spaces by generalizing the classical Krylov–Bogoliubov method, and by providing suitable polynomial and exponential moment bounds on the solution, together with pathwise estimates. Springer US 2019-07-16 2021 /pmc/articles/PMC8830535/ /pubmed/35210656 http://dx.doi.org/10.1007/s00245-019-09594-x Text en © The Author(s) 2019 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Coti Zelati, Michele
Glatt-Holtz, Nathan
Trivisa, Konstantina
Invariant Measures for the Stochastic One-Dimensional Compressible Navier–Stokes Equations
title Invariant Measures for the Stochastic One-Dimensional Compressible Navier–Stokes Equations
title_full Invariant Measures for the Stochastic One-Dimensional Compressible Navier–Stokes Equations
title_fullStr Invariant Measures for the Stochastic One-Dimensional Compressible Navier–Stokes Equations
title_full_unstemmed Invariant Measures for the Stochastic One-Dimensional Compressible Navier–Stokes Equations
title_short Invariant Measures for the Stochastic One-Dimensional Compressible Navier–Stokes Equations
title_sort invariant measures for the stochastic one-dimensional compressible navier–stokes equations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8830535/
https://www.ncbi.nlm.nih.gov/pubmed/35210656
http://dx.doi.org/10.1007/s00245-019-09594-x
work_keys_str_mv AT cotizelatimichele invariantmeasuresforthestochasticonedimensionalcompressiblenavierstokesequations
AT glattholtznathan invariantmeasuresforthestochasticonedimensionalcompressiblenavierstokesequations
AT trivisakonstantina invariantmeasuresforthestochasticonedimensionalcompressiblenavierstokesequations