Cargando…
Determining jumping performance from a single body-worn accelerometer using machine learning
External peak power in the countermovement jump is frequently used to monitor athlete training. The gold standard method uses force platforms, but they are unsuitable for field-based testing. However, alternatives based on jump flight time or Newtonian methods applied to inertial sensor data have no...
Autores principales: | White, Mark G. E., Bezodis, Neil E., Neville, Jonathon, Summers, Huw, Rees, Paul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8830617/ https://www.ncbi.nlm.nih.gov/pubmed/35143555 http://dx.doi.org/10.1371/journal.pone.0263846 |
Ejemplares similares
-
Improving Hip-Worn Accelerometer Estimates of Sitting Using Machine Learning Methods
por: KERR, JACQUELINE, et al.
Publicado: (2018) -
Calibrating Wrist-Worn Accelerometers for Physical Activity Assessment in Preschoolers: Machine Learning Approaches
por: Li, Shiyu, et al.
Publicado: (2020) -
Thigh-Worn Accelerometer Data in the Maastricht Study
por: Koster, Annemarie
Publicado: (2020) -
Compliance with wrist-worn accelerometers in primiparous early postpartum women
por: Wolpern, Ali E., et al.
Publicado: (2019) -
Body-worn triaxial accelerometer coherence
and reliability related to static posturography
in unilateral vestibular failure
por: Alessandrini, M., et al.
Publicado: (2017)