Cargando…
Using machine learning as a surrogate model for agent-based simulations
In this proof-of-concept work, we evaluate the performance of multiple machine-learning methods as surrogate models for use in the analysis of agent-based models (ABMs). Analysing agent-based modelling outputs can be challenging, as the relationships between input parameters can be non-linear or eve...
Autores principales: | Angione, Claudio, Silverman, Eric, Yaneske, Elisabeth |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8830643/ https://www.ncbi.nlm.nih.gov/pubmed/35143521 http://dx.doi.org/10.1371/journal.pone.0263150 |
Ejemplares similares
-
Machine and deep learning meet genome-scale metabolic modeling
por: Zampieri, Guido, et al.
Publicado: (2019) -
The poly-omics of ageing through individual-based metabolic modelling
por: Yaneske, Elisabeth, et al.
Publicado: (2018) -
Genome‐scale metabolic modelling of SARS‐CoV‐2 in cancer cells reveals an increased shift to glycolytic energy production
por: Yaneske, Elisabeth, et al.
Publicado: (2021) -
Situating agent-based modelling in population health research
por: Silverman, Eric, et al.
Publicado: (2021) -
Uncertainty quantification in cerebral circulation simulations focusing on the collateral flow: Surrogate model approach with machine learning
por: Yuhn, Changyoung, et al.
Publicado: (2022)