Cargando…

Assessment of medical management in Coronary Type 2 Diabetic patients with previous percutaneous coronary intervention in Spain: A retrospective analysis of electronic health records using Natural Language Processing

INTRODUCTION AND OBJECTIVES: Patients with type 2 diabetes (T2D) and stable coronary artery disease (CAD) previously revascularized with percutaneous coronary intervention (PCI) are at high risk of recurrent ischemic events. We aimed to provide real-world insights into the clinical characteristics a...

Descripción completa

Detalles Bibliográficos
Autores principales: González-Juanatey, Carlos, Anguita-Sá́nchez, Manuel, Barrios, Vivencio, Núñez-Gil, Iván, Gómez-Doblas, Juan Josá, García-Moll, Xavier, Lafuente-Gormaz, Carlos, Rollán-Gómez, María Jesús, Peral-Disdie, Vicente, Martínez-Dolz, Luis, Rodríguez-Santamarta, Miguel, Viñolas-Prat, Xavier, Soriano-Colomé, Toni, Muñoz-Aguilera, Roberto, Plaza, Ignacio, Curcio-Ruigómez, Alejandro, Orts-Soler, Ernesto, Segovia, Javier, Maté, Claudia, Cequier, Ángel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8830700/
https://www.ncbi.nlm.nih.gov/pubmed/35143527
http://dx.doi.org/10.1371/journal.pone.0263277
Descripción
Sumario:INTRODUCTION AND OBJECTIVES: Patients with type 2 diabetes (T2D) and stable coronary artery disease (CAD) previously revascularized with percutaneous coronary intervention (PCI) are at high risk of recurrent ischemic events. We aimed to provide real-world insights into the clinical characteristics and management of this clinical population, excluding patients with a history of myocardial infarction (MI) or stroke, using Natural Language Processing (NLP) technology. METHODS: This is a multicenter, retrospective study based on the secondary use of 2014–2018 real-world data captured in the Electronic Health Records (EHRs) of 1,579 patients (0.72% of the T2D population analyzed; n = 217,632 patients) from 12 representative hospitals in Spain. To access the unstructured clinical information in EHRs, we used the EHRead(®) technology, based on NLP and machine learning. Major adverse cardiovascular events (MACE) were considered: MI, ischemic stroke, urgent coronary revascularization, and hospitalization due to unstable angina. The association between MACE rates and the variables included in this study was evaluated following univariate and multivariate approaches. RESULTS: Most patients were male (72.13%), with a mean age of 70.5±10 years. Regarding T2D, most patients were non-insulin-dependent T2D (61.75%) with high prevalence of comorbidities. The median (Q1-Q3) duration of follow-up was 1.2 (0.3–4.5) years. Overall, 35.66% of patients suffered from at least one MACE during follow up. Using a Cox Proportional Hazards regression model analysis, several independent factors were associated with MACE during follow up: CAD duration (p < 0.001), COPD/Asthma (p = 0.021), heart valve disease (p = 0.031), multivessel disease (p = 0.005), insulin treatment (p < 0.001), statins treatment (p < 0.001), and clopidogrel treatment (p = 0.039). CONCLUSIONS: Our results showed high rates of MACE in a large real-world series of PCI-revascularized patients with T2D and CAD with no history of MI or stroke. These data represent a potential opportunity to improve the clinical management of these patients.