Cargando…
Identification of dynamic mass-action biochemical reaction networks using sparse Bayesian methods
Identifying the reactions that govern a dynamical biological system is a crucial but challenging task in systems biology. In this work, we present a data-driven method to infer the underlying biochemical reaction system governing a set of observed species concentrations over time. We formulate the p...
Autores principales: | Jiang, Richard, Singh, Prashant, Wrede, Fredrik, Hellander, Andreas, Petzold, Linda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8830701/ https://www.ncbi.nlm.nih.gov/pubmed/35100263 http://dx.doi.org/10.1371/journal.pcbi.1009830 |
Ejemplares similares
-
Accelerated regression-based summary statistics for discrete stochastic systems via approximate simulators
por: Jiang, Richard M., et al.
Publicado: (2021) -
Scalable machine learning-assisted model exploration and inference using Sciope
por: Singh, Prashant, et al.
Publicado: (2020) -
Epidemiological modeling in StochSS Live!
por: Jiang, Richard, et al.
Publicado: (2021) -
Hierarchical algorithm for the reaction-diffusion master equation
por: Hellander, Stefan, et al.
Publicado: (2020) -
Learning sparse models for a dynamic Bayesian network classifier of protein secondary structure
por: Aydin, Zafer, et al.
Publicado: (2011)