Cargando…
Sparse connectivity for MAP inference in linear models using sister mitral cells
Sensory processing is hard because the variables of interest are encoded in spike trains in a relatively complex way. A major goal in studies of sensory processing is to understand how the brain extracts those variables. Here we revisit a common encoding model in which variables are encoded linearly...
Autores principales: | Tootoonian, Sina, Schaefer, Andreas T., Latham, Peter E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8830798/ https://www.ncbi.nlm.nih.gov/pubmed/35100264 http://dx.doi.org/10.1371/journal.pcbi.1009808 |
Ejemplares similares
-
Polygenic Modeling with Bayesian Sparse Linear Mixed Models
por: Zhou, Xiang, et al.
Publicado: (2013) -
Design principles of the sparse coding network and the role of “sister cells” in the olfactory system of Drosophila
por: Zhang, Danke, et al.
Publicado: (2013) -
Linear Dynamic Sparse Modelling for functional MR imaging
por: Yan, Shulin, et al.
Publicado: (2014) -
Efficient inference for sparse latent variable models of transcriptional regulation
por: Dai, Zhenwen, et al.
Publicado: (2017) -
Inference via sparse coding in a hierarchical vision model
por: Bowren, Joshua, et al.
Publicado: (2022)