Cargando…

AI bias: exploring discriminatory algorithmic decision-making models and the application of possible machine-centric solutions adapted from the pharmaceutical industry

A new and unorthodox approach to deal with discriminatory bias in Artificial Intelligence is needed. As it is explored in detail, the current literature is a dichotomy with studies originating from the contrasting fields of study of either philosophy and sociology or data science and programming. It...

Descripción completa

Detalles Bibliográficos
Autor principal: Belenguer, Lorenzo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8830968/
https://www.ncbi.nlm.nih.gov/pubmed/35194591
http://dx.doi.org/10.1007/s43681-022-00138-8
Descripción
Sumario:A new and unorthodox approach to deal with discriminatory bias in Artificial Intelligence is needed. As it is explored in detail, the current literature is a dichotomy with studies originating from the contrasting fields of study of either philosophy and sociology or data science and programming. It is suggested that there is a need instead for an integration of both academic approaches, and needs to be machine-centric rather than human-centric applied with a deep understanding of societal and individual prejudices. This article is a novel approach developed into a framework of action: a bias impact assessment to raise awareness of bias and why, a clear set of methodologies as shown in a table comparing with the four stages of pharmaceutical trials, and a summary flowchart. Finally, this study concludes the need for a transnational independent body with enough power to guarantee the implementation of those solutions.