Cargando…
A deep adversarial model for segmentation-assisted COVID-19 diagnosis using CT images
The outbreak of coronavirus disease 2019 (COVID-19) is spreading rapidly around the world, resulting in a global pandemic. Imaging techniques such as computed tomography (CT) play an essential role in the diagnosis and treatment of the disease since lung infection or pneumonia is a common complicati...
Autores principales: | Yao, Hai-yan, Wan, Wang-gen, Li, Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8830991/ https://www.ncbi.nlm.nih.gov/pubmed/35194421 http://dx.doi.org/10.1186/s13634-022-00842-x |
Ejemplares similares
-
The Threat of Adversarial Attack on a COVID-19 CT Image-Based Deep Learning System
por: Li, Yang, et al.
Publicado: (2023) -
Image synthesis of monoenergetic CT image in dual‐energy CT using kilovoltage CT with deep convolutional generative adversarial networks
por: Kawahara, Daisuke, et al.
Publicado: (2021) -
Lesion segmentation in lung CT scans using unsupervised adversarial learning
por: Sherwani, Moiz Khan, et al.
Publicado: (2022) -
COVID-19 CT Image Synthesis With a Conditional Generative Adversarial Network
Publicado: (2020) -
Semi-supervised COVID-19 CT image segmentation using deep generative models
por: Zammit, Judah, et al.
Publicado: (2022)