Cargando…

Quantification of pulmonary perfusion abnormalities using DCE-MRI in COPD: comparison with quantitative CT and pulmonary function

OBJECTIVES: Pulmonary perfusion abnormalities are prevalent in patients with chronic obstructive pulmonary disease (COPD), are potentially reversible, and may be associated with emphysema development. Therefore, we aimed to evaluate the clinical meaningfulness of perfusion defects in percent (QDP) u...

Descripción completa

Detalles Bibliográficos
Autores principales: Schiwek, Marilisa, Triphan, Simon M. F., Biederer, Jürgen, Weinheimer, Oliver, Eichinger, Monika, Vogelmeier, Claus F., Jörres, Rudolf A., Kauczor, Hans-Ulrich, Heußel, Claus P., Konietzke, Philip, von Stackelberg, Oyunbileg, Risse, Frank, Jobst, Bertram J., Wielpütz, Mark O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8831348/
https://www.ncbi.nlm.nih.gov/pubmed/34553255
http://dx.doi.org/10.1007/s00330-021-08229-6
_version_ 1784648487946682368
author Schiwek, Marilisa
Triphan, Simon M. F.
Biederer, Jürgen
Weinheimer, Oliver
Eichinger, Monika
Vogelmeier, Claus F.
Jörres, Rudolf A.
Kauczor, Hans-Ulrich
Heußel, Claus P.
Konietzke, Philip
von Stackelberg, Oyunbileg
Risse, Frank
Jobst, Bertram J.
Wielpütz, Mark O.
author_facet Schiwek, Marilisa
Triphan, Simon M. F.
Biederer, Jürgen
Weinheimer, Oliver
Eichinger, Monika
Vogelmeier, Claus F.
Jörres, Rudolf A.
Kauczor, Hans-Ulrich
Heußel, Claus P.
Konietzke, Philip
von Stackelberg, Oyunbileg
Risse, Frank
Jobst, Bertram J.
Wielpütz, Mark O.
author_sort Schiwek, Marilisa
collection PubMed
description OBJECTIVES: Pulmonary perfusion abnormalities are prevalent in patients with chronic obstructive pulmonary disease (COPD), are potentially reversible, and may be associated with emphysema development. Therefore, we aimed to evaluate the clinical meaningfulness of perfusion defects in percent (QDP) using DCE-MRI. METHODS: We investigated a subset of baseline DCE-MRIs, paired inspiratory/expiratory CTs, and pulmonary function testing (PFT) of 83 subjects (age = 65.7 ± 9.0 years, patients-at-risk, and all GOLD groups) from one center of the “COSYCONET” COPD cohort. QDP was computed from DCE-MRI using an in-house developed quantification pipeline, including four different approaches: Otsu’s method, k-means clustering, texture analysis, and 80(th) percentile threshold. QDP was compared with visual MRI perfusion scoring, CT parametric response mapping (PRM) indices of emphysema (PRM(Emph)) and functional small airway disease (PRM(fSAD)), and FEV1/FVC from PFT. RESULTS: All QDP approaches showed high correlations with the MRI perfusion score (r = 0.67 to 0.72, p < 0.001), with the highest association based on Otsu’s method (r = 0.72, p < 0.001). QDP correlated significantly with all PRM indices (p < 0.001), with the strongest correlations with PRM(Emph) (r = 0.70 to 0.75, p < 0.001). QDP was distinctly higher than PRM(Emph) (mean difference = 35.85 to 40.40) and PRM(fSAD) (mean difference = 15.12 to 19.68), but in close agreement when combining both PRM indices (mean difference = 1.47 to 6.03) for all QDP approaches. QDP correlated moderately with FEV1/FVC (r = − 0.54 to − 0.41, p < 0.001). CONCLUSION: QDP is associated with established markers of disease severity and the extent corresponds to the CT-derived combined extent of PRM(Emph) and PRM(fSAD). We propose to use QDP based on Otsu’s method for future clinical studies in COPD. KEY POINTS: • QDP quantified from DCE-MRI is associated with visual MRI perfusion score, CT PRM indices, and PFT. • The extent of QDP from DCE-MRI corresponds to the combined extent of PRM (Emph)  and PRM (fSAD) from CT. • Assessing pulmonary perfusion abnormalities using DCE-MRI with QDP improved the correlations with CT PRM indices and PFT compared to the quantification of pulmonary blood flow and volume. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00330-021-08229-6.
format Online
Article
Text
id pubmed-8831348
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-88313482022-03-02 Quantification of pulmonary perfusion abnormalities using DCE-MRI in COPD: comparison with quantitative CT and pulmonary function Schiwek, Marilisa Triphan, Simon M. F. Biederer, Jürgen Weinheimer, Oliver Eichinger, Monika Vogelmeier, Claus F. Jörres, Rudolf A. Kauczor, Hans-Ulrich Heußel, Claus P. Konietzke, Philip von Stackelberg, Oyunbileg Risse, Frank Jobst, Bertram J. Wielpütz, Mark O. Eur Radiol Chest OBJECTIVES: Pulmonary perfusion abnormalities are prevalent in patients with chronic obstructive pulmonary disease (COPD), are potentially reversible, and may be associated with emphysema development. Therefore, we aimed to evaluate the clinical meaningfulness of perfusion defects in percent (QDP) using DCE-MRI. METHODS: We investigated a subset of baseline DCE-MRIs, paired inspiratory/expiratory CTs, and pulmonary function testing (PFT) of 83 subjects (age = 65.7 ± 9.0 years, patients-at-risk, and all GOLD groups) from one center of the “COSYCONET” COPD cohort. QDP was computed from DCE-MRI using an in-house developed quantification pipeline, including four different approaches: Otsu’s method, k-means clustering, texture analysis, and 80(th) percentile threshold. QDP was compared with visual MRI perfusion scoring, CT parametric response mapping (PRM) indices of emphysema (PRM(Emph)) and functional small airway disease (PRM(fSAD)), and FEV1/FVC from PFT. RESULTS: All QDP approaches showed high correlations with the MRI perfusion score (r = 0.67 to 0.72, p < 0.001), with the highest association based on Otsu’s method (r = 0.72, p < 0.001). QDP correlated significantly with all PRM indices (p < 0.001), with the strongest correlations with PRM(Emph) (r = 0.70 to 0.75, p < 0.001). QDP was distinctly higher than PRM(Emph) (mean difference = 35.85 to 40.40) and PRM(fSAD) (mean difference = 15.12 to 19.68), but in close agreement when combining both PRM indices (mean difference = 1.47 to 6.03) for all QDP approaches. QDP correlated moderately with FEV1/FVC (r = − 0.54 to − 0.41, p < 0.001). CONCLUSION: QDP is associated with established markers of disease severity and the extent corresponds to the CT-derived combined extent of PRM(Emph) and PRM(fSAD). We propose to use QDP based on Otsu’s method for future clinical studies in COPD. KEY POINTS: • QDP quantified from DCE-MRI is associated with visual MRI perfusion score, CT PRM indices, and PFT. • The extent of QDP from DCE-MRI corresponds to the combined extent of PRM (Emph)  and PRM (fSAD) from CT. • Assessing pulmonary perfusion abnormalities using DCE-MRI with QDP improved the correlations with CT PRM indices and PFT compared to the quantification of pulmonary blood flow and volume. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00330-021-08229-6. Springer Berlin Heidelberg 2021-09-22 2022 /pmc/articles/PMC8831348/ /pubmed/34553255 http://dx.doi.org/10.1007/s00330-021-08229-6 Text en © The Author(s) 2021, corrected publication 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Chest
Schiwek, Marilisa
Triphan, Simon M. F.
Biederer, Jürgen
Weinheimer, Oliver
Eichinger, Monika
Vogelmeier, Claus F.
Jörres, Rudolf A.
Kauczor, Hans-Ulrich
Heußel, Claus P.
Konietzke, Philip
von Stackelberg, Oyunbileg
Risse, Frank
Jobst, Bertram J.
Wielpütz, Mark O.
Quantification of pulmonary perfusion abnormalities using DCE-MRI in COPD: comparison with quantitative CT and pulmonary function
title Quantification of pulmonary perfusion abnormalities using DCE-MRI in COPD: comparison with quantitative CT and pulmonary function
title_full Quantification of pulmonary perfusion abnormalities using DCE-MRI in COPD: comparison with quantitative CT and pulmonary function
title_fullStr Quantification of pulmonary perfusion abnormalities using DCE-MRI in COPD: comparison with quantitative CT and pulmonary function
title_full_unstemmed Quantification of pulmonary perfusion abnormalities using DCE-MRI in COPD: comparison with quantitative CT and pulmonary function
title_short Quantification of pulmonary perfusion abnormalities using DCE-MRI in COPD: comparison with quantitative CT and pulmonary function
title_sort quantification of pulmonary perfusion abnormalities using dce-mri in copd: comparison with quantitative ct and pulmonary function
topic Chest
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8831348/
https://www.ncbi.nlm.nih.gov/pubmed/34553255
http://dx.doi.org/10.1007/s00330-021-08229-6
work_keys_str_mv AT schiwekmarilisa quantificationofpulmonaryperfusionabnormalitiesusingdcemriincopdcomparisonwithquantitativectandpulmonaryfunction
AT triphansimonmf quantificationofpulmonaryperfusionabnormalitiesusingdcemriincopdcomparisonwithquantitativectandpulmonaryfunction
AT biedererjurgen quantificationofpulmonaryperfusionabnormalitiesusingdcemriincopdcomparisonwithquantitativectandpulmonaryfunction
AT weinheimeroliver quantificationofpulmonaryperfusionabnormalitiesusingdcemriincopdcomparisonwithquantitativectandpulmonaryfunction
AT eichingermonika quantificationofpulmonaryperfusionabnormalitiesusingdcemriincopdcomparisonwithquantitativectandpulmonaryfunction
AT vogelmeierclausf quantificationofpulmonaryperfusionabnormalitiesusingdcemriincopdcomparisonwithquantitativectandpulmonaryfunction
AT jorresrudolfa quantificationofpulmonaryperfusionabnormalitiesusingdcemriincopdcomparisonwithquantitativectandpulmonaryfunction
AT kauczorhansulrich quantificationofpulmonaryperfusionabnormalitiesusingdcemriincopdcomparisonwithquantitativectandpulmonaryfunction
AT heußelclausp quantificationofpulmonaryperfusionabnormalitiesusingdcemriincopdcomparisonwithquantitativectandpulmonaryfunction
AT konietzkephilip quantificationofpulmonaryperfusionabnormalitiesusingdcemriincopdcomparisonwithquantitativectandpulmonaryfunction
AT vonstackelbergoyunbileg quantificationofpulmonaryperfusionabnormalitiesusingdcemriincopdcomparisonwithquantitativectandpulmonaryfunction
AT rissefrank quantificationofpulmonaryperfusionabnormalitiesusingdcemriincopdcomparisonwithquantitativectandpulmonaryfunction
AT jobstbertramj quantificationofpulmonaryperfusionabnormalitiesusingdcemriincopdcomparisonwithquantitativectandpulmonaryfunction
AT wielputzmarko quantificationofpulmonaryperfusionabnormalitiesusingdcemriincopdcomparisonwithquantitativectandpulmonaryfunction
AT quantificationofpulmonaryperfusionabnormalitiesusingdcemriincopdcomparisonwithquantitativectandpulmonaryfunction