Cargando…
Localization and Mapping on Agriculture Based on Point-Feature Extraction and Semiplanes Segmentation From 3D LiDAR Data
Developing ground robots for agriculture is a demanding task. Robots should be capable of performing tasks like spraying, harvesting, or monitoring. However, the absence of structure in the agricultural scenes challenges the implementation of localization and mapping algorithms. Thus, the research a...
Autores principales: | Aguiar, André Silva, Neves dos Santos, Filipe, Sobreira, Héber, Boaventura-Cunha, José, Sousa, Armando Jorge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8831384/ https://www.ncbi.nlm.nih.gov/pubmed/35155589 http://dx.doi.org/10.3389/frobt.2022.832165 |
Ejemplares similares
-
Deep Learned Quantization-Based Codec for 3D Airborne LiDAR Point Cloud Images
por: Tamilmathi, A. Christoper, et al.
Publicado: (2021) -
On the precision of 6 DoF IMU-LiDAR based localization in GNSS-denied scenarios
por: Frosi, Matteo, et al.
Publicado: (2023) -
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning
por: Yin, Huan, et al.
Publicado: (2021) -
Applications of LiDAR in Agriculture and Future Research Directions
por: Debnath, Sourabhi, et al.
Publicado: (2023) -
Method for extraction of airborne LiDAR point cloud buildings based on segmentation
por: Liu, Maohua, et al.
Publicado: (2020)