Cargando…
Deep learning segmentation and quantification method for assessing epicardial adipose tissue in CT calcium score scans
Epicardial adipose tissue volume (EAT) has been linked to coronary artery disease and the risk of major adverse cardiac events. As manual quantification of EAT is time-consuming, requires specialized training, and is prone to human error, we developed a deep learning method (DeepFat) for the automat...
Autores principales: | Hoori, Ammar, Hu, Tao, Lee, Juhwan, Al-Kindi, Sadeer, Rajagopalan, Sanjay, Wilson, David L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8831577/ https://www.ncbi.nlm.nih.gov/pubmed/35145186 http://dx.doi.org/10.1038/s41598-022-06351-z |
Ejemplares similares
-
Enhancing cardiovascular risk prediction through AI-enabled calcium-omics
por: Hoori, Ammar, et al.
Publicado: (2023) -
Automated Segmentation of Microvessels in Intravascular OCT Images Using Deep Learning
por: Lee, Juhwan, et al.
Publicado: (2022) -
Machine learning derived ECG risk score improves cardiovascular risk assessment in conjunction with coronary artery calcium scoring
por: Siva Kumar, Shruti, et al.
Publicado: (2022) -
Quantification of epicardial fat volume using low-dose cardiac scan in patients with low calcium score
por: Liang, Jianhua, et al.
Publicado: (2023) -
Neoatherosclerosis prediction using plaque markers in intravascular optical coherence tomography images
por: Lee, Juhwan, et al.
Publicado: (2022)