Cargando…
AttR2U-Net: A Fully Automated Model for MRI Nasopharyngeal Carcinoma Segmentation Based on Spatial Attention and Residual Recurrent Convolution
Radiotherapy is an essential method for treating nasopharyngeal carcinoma (NPC), and the segmentation of NPC is a crucial process affecting the treatment. However, manual segmentation of NPC is inefficient. Besides, the segmentation results of different doctors might vary considerably. To improve th...
Autores principales: | Zhang, Jiajing, Gu, Lin, Han, Guanghui, Liu, Xiujian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8832031/ https://www.ncbi.nlm.nih.gov/pubmed/35155206 http://dx.doi.org/10.3389/fonc.2021.816672 |
Ejemplares similares
-
DCNet: Densely Connected Deep Convolutional Encoder–Decoder Network for Nasopharyngeal Carcinoma Segmentation
por: Li, Yang, et al.
Publicado: (2021) -
CAFS: An Attention-Based Co-Segmentation Semi-Supervised Method for Nasopharyngeal Carcinoma Segmentation
por: Chen, Yitong, et al.
Publicado: (2022) -
NetR and AttR, Two New Bioinformatic Tools to Integrate Diverse Datasets into Cytoscape Network and Attribute Files
por: Halajyan, Armen, et al.
Publicado: (2019) -
Fully Convolutional DenseNet with Multiscale Context for Automated Breast Tumor Segmentation
por: Hai, Jinjin, et al.
Publicado: (2019) -
Split-Attention U-Net: A Fully Convolutional Network for Robust Multi-Label Segmentation from Brain MRI
por: Lee, Minho, et al.
Publicado: (2020)