Cargando…

Detection and Localization of Myocardial Infarction Based on Multi-Scale ResNet and Attention Mechanism

PURPOSE: Myocardial infarction (MI) is one of the most common cardiovascular diseases, frequently resulting in death. Early and accurate diagnosis is therefore important, and the electrocardiogram (ECG) is a simple and effective method for achieving this. However, it requires assessment by a special...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Yang, Liu, Wenyan, Zhang, Shuang, Xu, Lisheng, Zhu, Baofeng, Cui, Huiying, Geng, Ning, Han, Hongguang, Greenwald, Stephen E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8832050/
https://www.ncbi.nlm.nih.gov/pubmed/35153827
http://dx.doi.org/10.3389/fphys.2022.783184
_version_ 1784648643716841472
author Cao, Yang
Liu, Wenyan
Zhang, Shuang
Xu, Lisheng
Zhu, Baofeng
Cui, Huiying
Geng, Ning
Han, Hongguang
Greenwald, Stephen E.
author_facet Cao, Yang
Liu, Wenyan
Zhang, Shuang
Xu, Lisheng
Zhu, Baofeng
Cui, Huiying
Geng, Ning
Han, Hongguang
Greenwald, Stephen E.
author_sort Cao, Yang
collection PubMed
description PURPOSE: Myocardial infarction (MI) is one of the most common cardiovascular diseases, frequently resulting in death. Early and accurate diagnosis is therefore important, and the electrocardiogram (ECG) is a simple and effective method for achieving this. However, it requires assessment by a specialist; so many recent works have focused on the automatic assessment of ECG signals. METHODS: For the detection and localization of MI, deep learning models have been proposed, but the diagnostic accuracy of this approaches still need to be improved. Moreover, with deep learning methods the way in which a given result was achieved lacks interpretability. In this study, ECG data was obtained from the PhysioBank open access database, and was analyzed as follows. Firstly, the 12-lead ECG signal was preprocessed to identify each beat and obtain each heart interval. Secondly, a multi-scale deep learning model combined with a residual network and attention mechanism was proposed, where the input was the 12-lead ECG recording. Through the SENet model and the Grad-CAM algorithm, the weighting of each lead was calculated and visualized. Using existing knowledge of the way in which different types of MI gave characteristic patterns in specific ECG leads, the model was used to provisionally diagnose the type of MI according to the characteristics of each of the 12 ECG leads. RESULTS: Ten types of MI anterior, anterior lateral, anterior septal, inferior, inferior lateral, inferior posterior, inferior posterior lateral, lateral, posterior, and posterior lateral were diagnosed. The average accuracy, sensitivity, and specificity for MI detection of all lesion types was 99.98, 99.94, and 99.98%, respectively; and the average accuracy, sensitivity, and specificity for MI localization was 99.79, 99.88, and 99.98%, respectively. CONCLUSION: When compared to existing models based on traditional machine learning methods, convolutional neural networks and recurrent neural networks, the results showed that the proposed model had better diagnostic performance, being superior in accuracy, sensitivity, and specificity.
format Online
Article
Text
id pubmed-8832050
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-88320502022-02-12 Detection and Localization of Myocardial Infarction Based on Multi-Scale ResNet and Attention Mechanism Cao, Yang Liu, Wenyan Zhang, Shuang Xu, Lisheng Zhu, Baofeng Cui, Huiying Geng, Ning Han, Hongguang Greenwald, Stephen E. Front Physiol Physiology PURPOSE: Myocardial infarction (MI) is one of the most common cardiovascular diseases, frequently resulting in death. Early and accurate diagnosis is therefore important, and the electrocardiogram (ECG) is a simple and effective method for achieving this. However, it requires assessment by a specialist; so many recent works have focused on the automatic assessment of ECG signals. METHODS: For the detection and localization of MI, deep learning models have been proposed, but the diagnostic accuracy of this approaches still need to be improved. Moreover, with deep learning methods the way in which a given result was achieved lacks interpretability. In this study, ECG data was obtained from the PhysioBank open access database, and was analyzed as follows. Firstly, the 12-lead ECG signal was preprocessed to identify each beat and obtain each heart interval. Secondly, a multi-scale deep learning model combined with a residual network and attention mechanism was proposed, where the input was the 12-lead ECG recording. Through the SENet model and the Grad-CAM algorithm, the weighting of each lead was calculated and visualized. Using existing knowledge of the way in which different types of MI gave characteristic patterns in specific ECG leads, the model was used to provisionally diagnose the type of MI according to the characteristics of each of the 12 ECG leads. RESULTS: Ten types of MI anterior, anterior lateral, anterior septal, inferior, inferior lateral, inferior posterior, inferior posterior lateral, lateral, posterior, and posterior lateral were diagnosed. The average accuracy, sensitivity, and specificity for MI detection of all lesion types was 99.98, 99.94, and 99.98%, respectively; and the average accuracy, sensitivity, and specificity for MI localization was 99.79, 99.88, and 99.98%, respectively. CONCLUSION: When compared to existing models based on traditional machine learning methods, convolutional neural networks and recurrent neural networks, the results showed that the proposed model had better diagnostic performance, being superior in accuracy, sensitivity, and specificity. Frontiers Media S.A. 2022-01-28 /pmc/articles/PMC8832050/ /pubmed/35153827 http://dx.doi.org/10.3389/fphys.2022.783184 Text en Copyright © 2022 Cao, Liu, Zhang, Xu, Zhu, Cui, Geng, Han and Greenwald. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Physiology
Cao, Yang
Liu, Wenyan
Zhang, Shuang
Xu, Lisheng
Zhu, Baofeng
Cui, Huiying
Geng, Ning
Han, Hongguang
Greenwald, Stephen E.
Detection and Localization of Myocardial Infarction Based on Multi-Scale ResNet and Attention Mechanism
title Detection and Localization of Myocardial Infarction Based on Multi-Scale ResNet and Attention Mechanism
title_full Detection and Localization of Myocardial Infarction Based on Multi-Scale ResNet and Attention Mechanism
title_fullStr Detection and Localization of Myocardial Infarction Based on Multi-Scale ResNet and Attention Mechanism
title_full_unstemmed Detection and Localization of Myocardial Infarction Based on Multi-Scale ResNet and Attention Mechanism
title_short Detection and Localization of Myocardial Infarction Based on Multi-Scale ResNet and Attention Mechanism
title_sort detection and localization of myocardial infarction based on multi-scale resnet and attention mechanism
topic Physiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8832050/
https://www.ncbi.nlm.nih.gov/pubmed/35153827
http://dx.doi.org/10.3389/fphys.2022.783184
work_keys_str_mv AT caoyang detectionandlocalizationofmyocardialinfarctionbasedonmultiscaleresnetandattentionmechanism
AT liuwenyan detectionandlocalizationofmyocardialinfarctionbasedonmultiscaleresnetandattentionmechanism
AT zhangshuang detectionandlocalizationofmyocardialinfarctionbasedonmultiscaleresnetandattentionmechanism
AT xulisheng detectionandlocalizationofmyocardialinfarctionbasedonmultiscaleresnetandattentionmechanism
AT zhubaofeng detectionandlocalizationofmyocardialinfarctionbasedonmultiscaleresnetandattentionmechanism
AT cuihuiying detectionandlocalizationofmyocardialinfarctionbasedonmultiscaleresnetandattentionmechanism
AT gengning detectionandlocalizationofmyocardialinfarctionbasedonmultiscaleresnetandattentionmechanism
AT hanhongguang detectionandlocalizationofmyocardialinfarctionbasedonmultiscaleresnetandattentionmechanism
AT greenwaldstephene detectionandlocalizationofmyocardialinfarctionbasedonmultiscaleresnetandattentionmechanism