Cargando…
High-Silica Layer-like Zeolites Y from Seeding-Free Synthesis and Their Catalytic Performance in Low-Density Polyethylene Cracking
[Image: see text] Layer-like FAU-type zeolite Y was synthesized by an organosilane-assisted low-temperature hydrothermal method and its catalytic activity was verified in the low-density polyethylene (LDPE) cracking process. The synthesis procedure of high-silica layer-like zeolite Y was based on or...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8832398/ https://www.ncbi.nlm.nih.gov/pubmed/35076211 http://dx.doi.org/10.1021/acsami.1c21471 |
_version_ | 1784648712479309824 |
---|---|
author | Reiprich, Bastian Tarach, Karolina A. Pyra, Kamila Grzybek, Gabriela Góra-Marek, Kinga |
author_facet | Reiprich, Bastian Tarach, Karolina A. Pyra, Kamila Grzybek, Gabriela Góra-Marek, Kinga |
author_sort | Reiprich, Bastian |
collection | PubMed |
description | [Image: see text] Layer-like FAU-type zeolite Y was synthesized by an organosilane-assisted low-temperature hydrothermal method and its catalytic activity was verified in the low-density polyethylene (LDPE) cracking process. The synthesis procedure of high-silica layer-like zeolite Y was based on organosilane as a growth modifier, and for the first time, the seeding step was successfully avoided. The X-ray diffraction and electron microscopy studies, scanning electron microscopy and transmission electron microscopy confirmed the formation of pure FAU structure and zeolite particles of plate-like morphology arranged in the manner of the skeleton of a cuboctahedron. The in situ Fourier transform infrared (FT-IR) spectroscopic studies, low-temperature nitrogen sorption, and electron microscopy results provided detailed information on the obtained layer-like zeolite Y. The acidic and textural properties of layer-like zeolites Y were faced with the catalytic activity and selectivity in the cracking of LDPE. The quantitative assessment of catalyst selectivity performed in FT-IR/GC–MS operando studies pointed out that LDPE cracking over the layer-like material yielded value-added C(3)–C(4) gases and C(5)–C(6) liquid fraction at the expense of C(7+) fraction. The detailed analysis of coke residue on the catalyst was also performed by means of FT-IR spectroscopy, thermogravimetric analysis, and thermoprogrammed oxidation coupled with mass spectrometry for the detection of oxidation products. The acidic and textural properties gave a foundation for the catalytic performance and coking of catalysts. |
format | Online Article Text |
id | pubmed-8832398 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-88323982022-02-11 High-Silica Layer-like Zeolites Y from Seeding-Free Synthesis and Their Catalytic Performance in Low-Density Polyethylene Cracking Reiprich, Bastian Tarach, Karolina A. Pyra, Kamila Grzybek, Gabriela Góra-Marek, Kinga ACS Appl Mater Interfaces [Image: see text] Layer-like FAU-type zeolite Y was synthesized by an organosilane-assisted low-temperature hydrothermal method and its catalytic activity was verified in the low-density polyethylene (LDPE) cracking process. The synthesis procedure of high-silica layer-like zeolite Y was based on organosilane as a growth modifier, and for the first time, the seeding step was successfully avoided. The X-ray diffraction and electron microscopy studies, scanning electron microscopy and transmission electron microscopy confirmed the formation of pure FAU structure and zeolite particles of plate-like morphology arranged in the manner of the skeleton of a cuboctahedron. The in situ Fourier transform infrared (FT-IR) spectroscopic studies, low-temperature nitrogen sorption, and electron microscopy results provided detailed information on the obtained layer-like zeolite Y. The acidic and textural properties of layer-like zeolites Y were faced with the catalytic activity and selectivity in the cracking of LDPE. The quantitative assessment of catalyst selectivity performed in FT-IR/GC–MS operando studies pointed out that LDPE cracking over the layer-like material yielded value-added C(3)–C(4) gases and C(5)–C(6) liquid fraction at the expense of C(7+) fraction. The detailed analysis of coke residue on the catalyst was also performed by means of FT-IR spectroscopy, thermogravimetric analysis, and thermoprogrammed oxidation coupled with mass spectrometry for the detection of oxidation products. The acidic and textural properties gave a foundation for the catalytic performance and coking of catalysts. American Chemical Society 2022-01-25 2022-02-09 /pmc/articles/PMC8832398/ /pubmed/35076211 http://dx.doi.org/10.1021/acsami.1c21471 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Reiprich, Bastian Tarach, Karolina A. Pyra, Kamila Grzybek, Gabriela Góra-Marek, Kinga High-Silica Layer-like Zeolites Y from Seeding-Free Synthesis and Their Catalytic Performance in Low-Density Polyethylene Cracking |
title | High-Silica
Layer-like Zeolites Y from Seeding-Free
Synthesis and Their Catalytic Performance in Low-Density Polyethylene
Cracking |
title_full | High-Silica
Layer-like Zeolites Y from Seeding-Free
Synthesis and Their Catalytic Performance in Low-Density Polyethylene
Cracking |
title_fullStr | High-Silica
Layer-like Zeolites Y from Seeding-Free
Synthesis and Their Catalytic Performance in Low-Density Polyethylene
Cracking |
title_full_unstemmed | High-Silica
Layer-like Zeolites Y from Seeding-Free
Synthesis and Their Catalytic Performance in Low-Density Polyethylene
Cracking |
title_short | High-Silica
Layer-like Zeolites Y from Seeding-Free
Synthesis and Their Catalytic Performance in Low-Density Polyethylene
Cracking |
title_sort | high-silica
layer-like zeolites y from seeding-free
synthesis and their catalytic performance in low-density polyethylene
cracking |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8832398/ https://www.ncbi.nlm.nih.gov/pubmed/35076211 http://dx.doi.org/10.1021/acsami.1c21471 |
work_keys_str_mv | AT reiprichbastian highsilicalayerlikezeolitesyfromseedingfreesynthesisandtheircatalyticperformanceinlowdensitypolyethylenecracking AT tarachkarolinaa highsilicalayerlikezeolitesyfromseedingfreesynthesisandtheircatalyticperformanceinlowdensitypolyethylenecracking AT pyrakamila highsilicalayerlikezeolitesyfromseedingfreesynthesisandtheircatalyticperformanceinlowdensitypolyethylenecracking AT grzybekgabriela highsilicalayerlikezeolitesyfromseedingfreesynthesisandtheircatalyticperformanceinlowdensitypolyethylenecracking AT goramarekkinga highsilicalayerlikezeolitesyfromseedingfreesynthesisandtheircatalyticperformanceinlowdensitypolyethylenecracking |