Cargando…

Terahertz Fingerprint of Monolayer Wigner Crystals

[Image: see text] The strong Coulomb interaction in monolayer semiconductors represents a unique opportunity for the realization of Wigner crystals without external magnetic fields. In this work, we predict that the formation of monolayer Wigner crystals can be detected by their terahertz response s...

Descripción completa

Detalles Bibliográficos
Autores principales: Brem, Samuel, Malic, Ermin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8832488/
https://www.ncbi.nlm.nih.gov/pubmed/35048702
http://dx.doi.org/10.1021/acs.nanolett.1c04620
_version_ 1784648730818904064
author Brem, Samuel
Malic, Ermin
author_facet Brem, Samuel
Malic, Ermin
author_sort Brem, Samuel
collection PubMed
description [Image: see text] The strong Coulomb interaction in monolayer semiconductors represents a unique opportunity for the realization of Wigner crystals without external magnetic fields. In this work, we predict that the formation of monolayer Wigner crystals can be detected by their terahertz response spectrum, which exhibits a characteristic sequence of internal optical transitions. We apply the density matrix formalism to derive the internal quantum structure and the optical conductivity of the Wigner crystal and to microscopically analyze the multipeak shape of the obtained terahertz spectrum. Moreover, we predict a characteristic shift of the peak position as a function of charge density for different atomically thin materials and show how our results can be generalized to an arbitrary two-dimensional system.
format Online
Article
Text
id pubmed-8832488
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-88324882022-02-11 Terahertz Fingerprint of Monolayer Wigner Crystals Brem, Samuel Malic, Ermin Nano Lett [Image: see text] The strong Coulomb interaction in monolayer semiconductors represents a unique opportunity for the realization of Wigner crystals without external magnetic fields. In this work, we predict that the formation of monolayer Wigner crystals can be detected by their terahertz response spectrum, which exhibits a characteristic sequence of internal optical transitions. We apply the density matrix formalism to derive the internal quantum structure and the optical conductivity of the Wigner crystal and to microscopically analyze the multipeak shape of the obtained terahertz spectrum. Moreover, we predict a characteristic shift of the peak position as a function of charge density for different atomically thin materials and show how our results can be generalized to an arbitrary two-dimensional system. American Chemical Society 2022-01-20 2022-02-09 /pmc/articles/PMC8832488/ /pubmed/35048702 http://dx.doi.org/10.1021/acs.nanolett.1c04620 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Brem, Samuel
Malic, Ermin
Terahertz Fingerprint of Monolayer Wigner Crystals
title Terahertz Fingerprint of Monolayer Wigner Crystals
title_full Terahertz Fingerprint of Monolayer Wigner Crystals
title_fullStr Terahertz Fingerprint of Monolayer Wigner Crystals
title_full_unstemmed Terahertz Fingerprint of Monolayer Wigner Crystals
title_short Terahertz Fingerprint of Monolayer Wigner Crystals
title_sort terahertz fingerprint of monolayer wigner crystals
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8832488/
https://www.ncbi.nlm.nih.gov/pubmed/35048702
http://dx.doi.org/10.1021/acs.nanolett.1c04620
work_keys_str_mv AT bremsamuel terahertzfingerprintofmonolayerwignercrystals
AT malicermin terahertzfingerprintofmonolayerwignercrystals