Cargando…
Efficient multimodal deep-learning-based COVID-19 diagnostic system for noisy and corrupted images
INTRODUCTION: In humanity’s ongoing fight against its common enemy of COVID-19, researchers have been relentless in finding efficient technologies to support mitigation, diagnosis, management, contact tracing, and ultimately vaccination. OBJECTIVES: Engineers and computer scientists have deployed th...
Autores principales: | Hammad, Mohamed, Tawalbeh, Lo'ai, Iliyasu, Abdullah M., Sedik, Ahmed, Abd El-Samie, Fathi E., Alkinani, Monagi H., Abd El-Latif, Ahmed A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier B.V. on behalf of King Saud University.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8832871/ https://www.ncbi.nlm.nih.gov/pubmed/35185304 http://dx.doi.org/10.1016/j.jksus.2022.101898 |
Ejemplares similares
-
An efficient multi-biometric cancellable biometric scheme based on deep fusion and deep dream
por: El-Rahiem, Basma Abd, et al.
Publicado: (2021) -
Efficient deep learning approach for augmented detection of Coronavirus disease
por: Sedik, Ahmed, et al.
Publicado: (2021) -
Deploying Machine and Deep Learning Models for Efficient Data-Augmented Detection of COVID-19 Infections
por: Sedik, Ahmed, et al.
Publicado: (2020) -
Deploying Machine Learning Techniques for Human Emotion Detection
por: Siam, Ali I., et al.
Publicado: (2022) -
A Robust Quasi-Quantum Walks-based Steganography Protocol for Secure Transmission of Images on Cloud-based E-healthcare Platforms
por: Abd-El-Atty, Bassem, et al.
Publicado: (2020)