Cargando…
Data-driven multiscale modelling and analysis of COVID-19 spatiotemporal evolution using explainable AI
To quantificationally identify the optimal control measures for regulators to best minimize COVID-19′s growth (G-rate) and death (D-rate) rates in today's context, this paper develops a top-down multiscale engineering approach which encompasses a series of systematic analyses, namely: (global s...
Autores principales: | Chew, Alvin Wei Ze, Zhang, Limao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8832881/ https://www.ncbi.nlm.nih.gov/pubmed/35186668 http://dx.doi.org/10.1016/j.scs.2022.103772 |
Ejemplares similares
-
Deep learning modeling of public’s sentiments towards temporal evolution of COVID-19 transmission
por: Wang, Ying, et al.
Publicado: (2022) -
Correlating dynamic climate conditions and socioeconomic-governmental factors to spatiotemporal spread of COVID-19 via semantic segmentation deep learning analysis
por: Chew, Alvin Wei Ze, et al.
Publicado: (2021) -
Hybrid deep learning of social media big data for predicting the evolution of COVID-19 transmission
por: Chew, Alvin Wei Ze, et al.
Publicado: (2021) -
Potentially adaptive SARS-CoV-2 mutations discovered with novel spatiotemporal and explainable AI models
por: Garvin, Michael R., et al.
Publicado: (2020) -
An Explainable AI driven Decision Support System for COVID-19 Diagnosis using Fused Classification and Segmentation
por: Niranjan, K, et al.
Publicado: (2023)