Cargando…
Shape multistability in flexible tubular crystals through interactions of mobile dislocations
We study avenues to shape multistability and shape morphing in flexible crystalline membranes of cylindrical topology, enabled by glide mobility of dislocations. Using computational modeling, we obtain states of mechanical equilibrium presenting a wide variety of tubular crystal deformation geometri...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833160/ https://www.ncbi.nlm.nih.gov/pubmed/35110407 http://dx.doi.org/10.1073/pnas.2115423119 |
_version_ | 1784648866332672000 |
---|---|
author | Zakharov, Andrei Beller, Daniel A. |
author_facet | Zakharov, Andrei Beller, Daniel A. |
author_sort | Zakharov, Andrei |
collection | PubMed |
description | We study avenues to shape multistability and shape morphing in flexible crystalline membranes of cylindrical topology, enabled by glide mobility of dislocations. Using computational modeling, we obtain states of mechanical equilibrium presenting a wide variety of tubular crystal deformation geometries, due to an interplay of effective defect interactions with out-of-tangent-plane deformations that reorient the tube axis. Importantly, this interplay often stabilizes defect configurations quite distinct from those predicted for a two-dimensional crystal confined to the surface of a rigid cylinder. We find that relative and absolute stability of competing states depend strongly on control parameters such as bending rigidity, applied stress, and spontaneous curvature. Using stable dislocation pair arrangements as building blocks, we demonstrate that targeted macroscopic three-dimensional conformations of thin crystalline tubes can be programmed by imposing certain sparse patterns of defects. Our findings reveal a broad design space for controllable and reconfigurable colloidal tube geometries, with potential relevance also to architected carbon nanotubes and microtubules. |
format | Online Article Text |
id | pubmed-8833160 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-88331602022-02-18 Shape multistability in flexible tubular crystals through interactions of mobile dislocations Zakharov, Andrei Beller, Daniel A. Proc Natl Acad Sci U S A Physical Sciences We study avenues to shape multistability and shape morphing in flexible crystalline membranes of cylindrical topology, enabled by glide mobility of dislocations. Using computational modeling, we obtain states of mechanical equilibrium presenting a wide variety of tubular crystal deformation geometries, due to an interplay of effective defect interactions with out-of-tangent-plane deformations that reorient the tube axis. Importantly, this interplay often stabilizes defect configurations quite distinct from those predicted for a two-dimensional crystal confined to the surface of a rigid cylinder. We find that relative and absolute stability of competing states depend strongly on control parameters such as bending rigidity, applied stress, and spontaneous curvature. Using stable dislocation pair arrangements as building blocks, we demonstrate that targeted macroscopic three-dimensional conformations of thin crystalline tubes can be programmed by imposing certain sparse patterns of defects. Our findings reveal a broad design space for controllable and reconfigurable colloidal tube geometries, with potential relevance also to architected carbon nanotubes and microtubules. National Academy of Sciences 2022-02-02 2022-02-08 /pmc/articles/PMC8833160/ /pubmed/35110407 http://dx.doi.org/10.1073/pnas.2115423119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Physical Sciences Zakharov, Andrei Beller, Daniel A. Shape multistability in flexible tubular crystals through interactions of mobile dislocations |
title | Shape multistability in flexible tubular crystals through interactions of mobile dislocations |
title_full | Shape multistability in flexible tubular crystals through interactions of mobile dislocations |
title_fullStr | Shape multistability in flexible tubular crystals through interactions of mobile dislocations |
title_full_unstemmed | Shape multistability in flexible tubular crystals through interactions of mobile dislocations |
title_short | Shape multistability in flexible tubular crystals through interactions of mobile dislocations |
title_sort | shape multistability in flexible tubular crystals through interactions of mobile dislocations |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833160/ https://www.ncbi.nlm.nih.gov/pubmed/35110407 http://dx.doi.org/10.1073/pnas.2115423119 |
work_keys_str_mv | AT zakharovandrei shapemultistabilityinflexibletubularcrystalsthroughinteractionsofmobiledislocations AT bellerdaniela shapemultistabilityinflexibletubularcrystalsthroughinteractionsofmobiledislocations |