Cargando…
An MRI-Based Radiomics Model for Predicting the Benignity and Malignancy of BI-RADS 4 Breast Lesions
OBJECTIVES: The probability of Breast Imaging Reporting and Data Systems (BI-RADS) 4 lesions being malignant is 2%–95%, which shows the difficulty to make a diagnosis. Radiomics models based on magnetic resonance imaging (MRI) can replace clinicopathological diagnosis with high performance. In the p...
Autores principales: | Zhang, Renzhi, Wei, Wei, Li, Rang, Li, Jing, Zhou, Zhuhuang, Ma, Menghang, Zhao, Rui, Zhao, Xinming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833233/ https://www.ncbi.nlm.nih.gov/pubmed/35155178 http://dx.doi.org/10.3389/fonc.2021.733260 |
Ejemplares similares
-
Synthetic MRI, multiplexed sensitivity encoding, and BI-RADS for benign and malignant breast cancer discrimination
por: Liu, Jinrui, et al.
Publicado: (2023) -
Application of MRI Radiomics-Based Machine Learning Model to Improve Contralateral BI-RADS 4 Lesion Assessment
por: Hao, Wen, et al.
Publicado: (2020) -
BI-RADS Reading of Non-Mass Lesions on DCE-MRI and Differential Diagnosis Performed by Radiomics and Deep Learning
por: Zhou, Jiejie, et al.
Publicado: (2021) -
Multi-modality radiomics nomogram based on DCE-MRI and ultrasound images for benign and malignant breast lesion classification
por: Liu, Xinmiao, et al.
Publicado: (2022) -
Combination of ultrafast dynamic contrast-enhanced MRI-based radiomics and artificial neural network in assessing BI-RADS 4 breast lesions: Potential to avoid unnecessary biopsies
por: Lyu, Yidong, et al.
Publicado: (2023)