Cargando…
Deep learning‐based auto‐segmentation of clinical target volumes for radiotherapy treatment of cervical cancer
OBJECTIVES: Because radiotherapy is indispensible for treating cervical cancer, it is critical to accurately and efficiently delineate the radiation targets. We evaluated a deep learning (DL)‐based auto‐segmentation algorithm for automatic contouring of clinical target volumes (CTVs) in cervical can...
Autores principales: | Ma, Chen‐Ying, Zhou, Ju‐Ying, Xu, Xiao‐Ting, Guo, Jian, Han, Miao‐Fei, Gao, Yao‐Zong, Du, Hui, Stahl, Johannes N., Maltz, Jonathan S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833283/ https://www.ncbi.nlm.nih.gov/pubmed/34807501 http://dx.doi.org/10.1002/acm2.13470 |
Ejemplares similares
-
Geometric and dosimetric evaluation of deep learning based auto‐segmentation for clinical target volume on breast cancer
por: Zhong, Yang, et al.
Publicado: (2023) -
Clinical evaluation of deep learning–based clinical target volume three-channel auto-segmentation algorithm for adaptive radiotherapy in cervical cancer
por: Ma, Chen-ying, et al.
Publicado: (2022) -
Evaluation of deep learning‐based auto‐segmentation algorithms for delineating clinical target volume and organs at risk involving data for 125 cervical cancer patients
por: Wang, Zhi, et al.
Publicado: (2020) -
Comprehensive clinical evaluation of deep learning-based auto-segmentation for radiotherapy in patients with cervical cancer
por: Chung, Seung Yeun, et al.
Publicado: (2023) -
The clinical evaluation of atlas-based auto-segmentation for automatic contouring during cervical cancer radiotherapy
por: Li, Yi, et al.
Publicado: (2022)