Cargando…
Utility of Cell-Free DNA Detection in Transplant Oncology
SIMPLE SUMMARY: Transplant oncology is an emerging field in cancer treatment that applies transplant medicine, surgery, and oncology to improve cancer patient survival and quality of life. This review aims to provide a comprehensive overview of the history and emergence of cfDNA technology, its appl...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833373/ https://www.ncbi.nlm.nih.gov/pubmed/35159010 http://dx.doi.org/10.3390/cancers14030743 |
Sumario: | SIMPLE SUMMARY: Transplant oncology is an emerging field in cancer treatment that applies transplant medicine, surgery, and oncology to improve cancer patient survival and quality of life. This review aims to provide a comprehensive overview of the history and emergence of cfDNA technology, its applications to specifically monitor tumor burden at pre-and post-liver transplant stages, and evaluate transplant rejection. The use of ctDNA to evaluate transplant rejection has been extensively studied in non-hepatocellular carcinoma (HCC) diseases. Emerging studies have also investigated the use of ctDNA detection in evaluating HCC tumor burden pre-and post-surgery as well as transplant rejection. However, extensive studies still need to be conducted to evaluate the role of ctDNA detection in the medical management of transplant oncology patients. ABSTRACT: Transplant oncology is an emerging field in cancer treatment that applies transplant medicine, surgery, and oncology to improve cancer patient survival and quality of life. A critical concept that must be addressed to ensure the successful application of transplant oncology to patient care is efficient monitoring of tumor burden pre-and post-transplant and transplant rejection. Cell-free DNA (cfDNA) detection has emerged as a vital tool in revolutionizing the management of cancer patients who undergo organ transplantation. The advances in cfDNA technology have provided options to perform a pre-transplant evaluation of minimal residual disease (MRD) and post-transplant evaluation of cancer recurrence and transplant rejection. This review aims to provide a comprehensive overview of the history and emergence of cfDNA technology, its applications to specifically monitor tumor burden at pre-and post-transplant stages, and evaluate transplant rejection. |
---|