Cargando…
Application of Machine Learning Methods to Improve the Performance of Ultrasound in Head and Neck Oncology: A Literature Review
SIMPLE SUMMARY: Ultrasound (US) is a non-invasive imaging method that is routinely utilized in head and neck cancer patients to assess the anatomic extent of tumors, nodal and non-nodal neck masses and for imaging the salivary glands. In this review, we summarize the present evidence on whether the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833587/ https://www.ncbi.nlm.nih.gov/pubmed/35158932 http://dx.doi.org/10.3390/cancers14030665 |
Sumario: | SIMPLE SUMMARY: Ultrasound (US) is a non-invasive imaging method that is routinely utilized in head and neck cancer patients to assess the anatomic extent of tumors, nodal and non-nodal neck masses and for imaging the salivary glands. In this review, we summarize the present evidence on whether the application of machine learning (ML) methods can potentially improve the performance of US in head and neck cancer patients. We found that published clinical literature on ML methods applied to US datasets was limited but showed evidence of improved diagnostic and prognostic performance. However, a majority of these studies were based on retrospective evaluation and conducted at a single center with a limited number of datasets. The conduct of multi-center studies could help better validate the performance of ML-based US radiomics and facilitate the integration of these approaches into routine clinical practice. ABSTRACT: Radiomics is a rapidly growing area of research within radiology that involves the extraction and modeling of high-dimensional quantitative imaging features using machine learning/artificial intelligence (ML/AI) methods. In this review, we describe the published clinical evidence on the application of ML methods to improve the performance of ultrasound (US) in head and neck oncology. A systematic search of electronic databases (MEDLINE, PubMed, clinicaltrials.gov) was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Of 15,080 initial articles identified, 34 studies were selected for in-depth analysis. Twenty-five out of 34 studies (74%) focused on the diagnostic application of US radiomics while 6 (18%) studies focused on response assessment and 3 (8%) studies utilized US radiomics for modeling normal tissue toxicity. Support vector machine (SVM) was the most commonly employed ML method (47%) followed by multivariate logistic regression (24%) and k-nearest neighbor analysis (21%). Only 11/34 (~32%) of the studies included an independent validation set. A majority of studies were retrospective in nature (76%) and based on single-center evaluation (85%) with variable numbers of patients (12–1609) and imaging datasets (32–1624). Despite these limitations, the application of ML methods resulted in improved diagnostic and prognostic performance of US highlighting the potential clinical utility of this approach. |
---|