Cargando…
Untapped Neuroimaging Tools for Neuro-Oncology: Connectomics and Spatial Transcriptomics
SIMPLE SUMMARY: Brain imaging, specifically magnetic resonance imaging (MRI), plays a key role in the clinical and research aspects of neuro-oncology. Novel neuroimaging techniques enable the transformation of a brain MRI into a so-called average brain. This allows projects using already acquired br...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833690/ https://www.ncbi.nlm.nih.gov/pubmed/35158732 http://dx.doi.org/10.3390/cancers14030464 |
Sumario: | SIMPLE SUMMARY: Brain imaging, specifically magnetic resonance imaging (MRI), plays a key role in the clinical and research aspects of neuro-oncology. Novel neuroimaging techniques enable the transformation of a brain MRI into a so-called average brain. This allows projects using already acquired brain MRIs to perform group analyses and draw conclusions. Once the data are in this average brain, several types of analyses can be performed. For example, determining the most vulnerable locations for certain tumor types or perhaps even the underlying circuitry and gene expression that might cause predisposition to tumor growth. This information may further our understanding of tumor behavior, leading to better patient counseling, surgery timing, and treatment monitoring. ABSTRACT: Neuro-oncology research is broad and includes several branches, one of which is neuroimaging. Magnetic resonance imaging (MRI) is instrumental for the diagnosis and treatment monitoring of patients with brain tumors. Most commonly, structural and perfusion MRI sequences are acquired to characterize tumors and understand their behaviors. Thanks to technological advances, structural brain MRI can now be transformed into a so-called average brain accounting for individual morphological differences, which enables retrospective group analysis. These normative analyses are uncommonly used in neuro-oncology research. Once the data have been normalized, voxel-wise analyses and spatial mapping can be performed. Additionally, investigations of underlying connectomics can be performed using functional and structural templates. Additionally, a recently available template of spatial transcriptomics has enabled the assessment of associated gene expression. The few published normative analyses have shown relationships between tumor characteristics and spatial localization, as well as insights into the circuitry associated with epileptogenic tumors and depression after cingulate tumor resection. The wide breadth of possibilities with normative analyses remain largely unexplored, specifically in terms of connectomics and imaging transcriptomics. We provide a framework for performing normative analyses in oncology while also highlighting their limitations. Normative analyses are an opportunity to address neuro-oncology questions from a different perspective. |
---|