Cargando…
LEAP-2 Counteracts Ghrelin-Induced Food Intake in a Nutrient, Growth Hormone and Age Independent Manner
Data gleaned recently shows that ghrelin, a stomach derived peptide, and liver-expressed-antimicrobial peptide 2 (LEAP-2) play opposite roles on food intake. However, the data available with LEAP-2 in relation to in vivo studies are still very scanty and some key questions regarding the interplay am...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8834077/ https://www.ncbi.nlm.nih.gov/pubmed/35159134 http://dx.doi.org/10.3390/cells11030324 |
_version_ | 1784649093311627264 |
---|---|
author | Lugilde, Javier Casado, Sabela Beiroa, Daniel Cuñarro, Juan Garcia-Lavandeira, Montserrat Álvarez, Clara V. Nogueiras, Rubén Diéguez, Carlos Tovar, Sulay |
author_facet | Lugilde, Javier Casado, Sabela Beiroa, Daniel Cuñarro, Juan Garcia-Lavandeira, Montserrat Álvarez, Clara V. Nogueiras, Rubén Diéguez, Carlos Tovar, Sulay |
author_sort | Lugilde, Javier |
collection | PubMed |
description | Data gleaned recently shows that ghrelin, a stomach derived peptide, and liver-expressed-antimicrobial peptide 2 (LEAP-2) play opposite roles on food intake. However, the data available with LEAP-2 in relation to in vivo studies are still very scanty and some key questions regarding the interplay among ghrelin and LEAP-2 remain to be answered. In this work, using rats and mice, we study fasting-induced food intake as well as testing the effect of diet exposure, e.g., standard diet and high fat diet, in terms of ghrelin-induced food intake. The anorexigenic effect of LEAP-2 on fasting induced food intake appears to be dependent on energy stores, being more evident in ob/ob than in wild type mice and also in animals exposed to high fat diet. On the other hand, LEAP-2 administration markedly inhibited ghrelin-induced food intake in lean, obese (ob/ob and DIO) mice, aged rats and GH-deficient dwarf rats. In contrast, the inhibitory effect on glucose levels can only be observed in some specific experimental models indicating that the mechanisms involved are likely to be quite different. Taken together from these data, LEAP-2 emerged as a potential candidate to be therapeutically useful in obesity. |
format | Online Article Text |
id | pubmed-8834077 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88340772022-02-12 LEAP-2 Counteracts Ghrelin-Induced Food Intake in a Nutrient, Growth Hormone and Age Independent Manner Lugilde, Javier Casado, Sabela Beiroa, Daniel Cuñarro, Juan Garcia-Lavandeira, Montserrat Álvarez, Clara V. Nogueiras, Rubén Diéguez, Carlos Tovar, Sulay Cells Article Data gleaned recently shows that ghrelin, a stomach derived peptide, and liver-expressed-antimicrobial peptide 2 (LEAP-2) play opposite roles on food intake. However, the data available with LEAP-2 in relation to in vivo studies are still very scanty and some key questions regarding the interplay among ghrelin and LEAP-2 remain to be answered. In this work, using rats and mice, we study fasting-induced food intake as well as testing the effect of diet exposure, e.g., standard diet and high fat diet, in terms of ghrelin-induced food intake. The anorexigenic effect of LEAP-2 on fasting induced food intake appears to be dependent on energy stores, being more evident in ob/ob than in wild type mice and also in animals exposed to high fat diet. On the other hand, LEAP-2 administration markedly inhibited ghrelin-induced food intake in lean, obese (ob/ob and DIO) mice, aged rats and GH-deficient dwarf rats. In contrast, the inhibitory effect on glucose levels can only be observed in some specific experimental models indicating that the mechanisms involved are likely to be quite different. Taken together from these data, LEAP-2 emerged as a potential candidate to be therapeutically useful in obesity. MDPI 2022-01-19 /pmc/articles/PMC8834077/ /pubmed/35159134 http://dx.doi.org/10.3390/cells11030324 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lugilde, Javier Casado, Sabela Beiroa, Daniel Cuñarro, Juan Garcia-Lavandeira, Montserrat Álvarez, Clara V. Nogueiras, Rubén Diéguez, Carlos Tovar, Sulay LEAP-2 Counteracts Ghrelin-Induced Food Intake in a Nutrient, Growth Hormone and Age Independent Manner |
title | LEAP-2 Counteracts Ghrelin-Induced Food Intake in a Nutrient, Growth Hormone and Age Independent Manner |
title_full | LEAP-2 Counteracts Ghrelin-Induced Food Intake in a Nutrient, Growth Hormone and Age Independent Manner |
title_fullStr | LEAP-2 Counteracts Ghrelin-Induced Food Intake in a Nutrient, Growth Hormone and Age Independent Manner |
title_full_unstemmed | LEAP-2 Counteracts Ghrelin-Induced Food Intake in a Nutrient, Growth Hormone and Age Independent Manner |
title_short | LEAP-2 Counteracts Ghrelin-Induced Food Intake in a Nutrient, Growth Hormone and Age Independent Manner |
title_sort | leap-2 counteracts ghrelin-induced food intake in a nutrient, growth hormone and age independent manner |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8834077/ https://www.ncbi.nlm.nih.gov/pubmed/35159134 http://dx.doi.org/10.3390/cells11030324 |
work_keys_str_mv | AT lugildejavier leap2counteractsghrelininducedfoodintakeinanutrientgrowthhormoneandageindependentmanner AT casadosabela leap2counteractsghrelininducedfoodintakeinanutrientgrowthhormoneandageindependentmanner AT beiroadaniel leap2counteractsghrelininducedfoodintakeinanutrientgrowthhormoneandageindependentmanner AT cunarrojuan leap2counteractsghrelininducedfoodintakeinanutrientgrowthhormoneandageindependentmanner AT garcialavandeiramontserrat leap2counteractsghrelininducedfoodintakeinanutrientgrowthhormoneandageindependentmanner AT alvarezclarav leap2counteractsghrelininducedfoodintakeinanutrientgrowthhormoneandageindependentmanner AT nogueirasruben leap2counteractsghrelininducedfoodintakeinanutrientgrowthhormoneandageindependentmanner AT dieguezcarlos leap2counteractsghrelininducedfoodintakeinanutrientgrowthhormoneandageindependentmanner AT tovarsulay leap2counteractsghrelininducedfoodintakeinanutrientgrowthhormoneandageindependentmanner |