Cargando…
Microtentacle Formation in Ovarian Carcinoma
SIMPLE SUMMARY: Ovarian cancer commonly spreads throughout the peritoneal cavity by exfoliation of malignant cells into ascites. Chemoresistance remains an important therapeutic obstacle. Microtentacles (McTNs) are microtubule-based protrusions that may influence the metastatic potential and chemore...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8834106/ https://www.ncbi.nlm.nih.gov/pubmed/35159067 http://dx.doi.org/10.3390/cancers14030800 |
Sumario: | SIMPLE SUMMARY: Ovarian cancer commonly spreads throughout the peritoneal cavity by exfoliation of malignant cells into ascites. Chemoresistance remains an important therapeutic obstacle. Microtentacles (McTNs) are microtubule-based protrusions that may influence the metastatic potential and chemoresistance profile of free-floating cells. In this study, we define the various microtentacle morphologies that can be observed in detached ovarian cancer cells, and their clustering behavior in relationship to histology, α-tubulin post-translational modifications, β-tubulin isotype, modulators of cortical stiffness, and sensitivity to clinically relevant microtubule-targeting agents. McTNs represent a new therapeutic target for this disease, and an understanding of their biology could have implications for the refinement of therapies, including intraperitoneal drug delivery. ABSTRACT: Background: The development of chemoresistance to paclitaxel and carboplatin represents a major therapeutic challenge in ovarian cancer, a disease frequently characterized by malignant ascites and extrapelvic metastasis. Microtentacles (McTNs) are tubulin-based projections observed in detached breast cancer cells. In this study, we investigated whether ovarian cancers exhibit McTNs and characterized McTN biology. Methods: We used an established lipid-tethering mechanism to suspend and image individual cancer cells. We queried a panel of immortalized serous (OSC) and clear cell (OCCC) cell lines as well as freshly procured ascites and human ovarian surface epithelium (HOSE). We assessed by Western blot β-tubulin isotype, α-tubulin post-translational modifications and actin regulatory proteins in attached/detached states. We studied clustering in suspended conditions. Effects of treatment with microtubule depolymerizing and stabilizing drugs were described. Results: Among cell lines, up to 30% of cells expressed McTNs. Four McTN morphologies (absent, symmetric-short, symmetric-long, tufted) were observed in immortalized cultures as well as ascites. McTN number/length varied with histology according to metastatic potential. Most OCCC overexpressed class III ß-tubulin. OCCC/OSC cell lines exhibited a trend towards more microtubule-stabilizing post-translational modifications of α-tubulin relative to HOSE. Microtubule depolymerizing drugs decreased the number/length of McTNs, confirming that McTNs are composed of tubulin. Cells that failed to form McTNs demonstrated differential expression of α-tubulin- and actin-regulating proteins relative to cells that form McTNs. Cluster formation is more susceptible to microtubule targeting agents in cells that form McTNs, suggesting a role for McTNs in aggregation. Conclusions: McTNs likely participate in key aspects of ovarian cancer metastasis. McTNs represent a new therapeutic target for this disease that could refine therapies, including intraperitoneal drug delivery. |
---|