Cargando…
Expression of Fibrosis-Related Genes in Liver and Kidney Fibrosis in Comparison to Inflammatory Bowel Diseases
Fibrosis is an important feature of inflammatory bowel diseases (IBD), but its pathogenesis is incompletely understood. Our aim was to identify genes important for fibrosis in IBD by comparison with kidney and liver fibrosis. First, we performed bioinformatics analysis of Gene Expression Omnibus dat...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8834113/ https://www.ncbi.nlm.nih.gov/pubmed/35159124 http://dx.doi.org/10.3390/cells11030314 |
Sumario: | Fibrosis is an important feature of inflammatory bowel diseases (IBD), but its pathogenesis is incompletely understood. Our aim was to identify genes important for fibrosis in IBD by comparison with kidney and liver fibrosis. First, we performed bioinformatics analysis of Gene Expression Omnibus datasets of liver and kidney fibrosis and identified CXCL9, THBS2, MGP, PTPRC, CD52, GZMA, DPT and DCN as potentially important genes with altered expression in fibrosis. We then performed qPCR analysis of the selected genes’ expression on samples of fibrotic kidney, liver, Crohn’s disease (CD) with and without fibrosis and ulcerative colitis (UC), in comparison to corresponding normal tissue. We found significantly altered expression in fibrosis for all selected genes. A significant difference for some genes was observed in CD with fibrosis in comparison to CD without fibrosis and UC. We conclude that similar changes in the expression of selected genes in liver, kidney fibrosis and IBD provide further evidence that fibrosis in IBD might share common mechanisms with other organs, supporting the hypothesis that fibrosis is the common pathway in diseases of various organs. Some genes were already active in IBD with inflammation without fibrosis, suggesting the early activation of profibrotic pathways or overlapping function in fibrosis and inflammation. |
---|