Cargando…
Use of Artificial Neural Networks and NIR Spectroscopy for Non-Destructive Grape Texture Prediction
In this article, a combination of non-destructive NIR spectroscopy and machine learning techniques was applied to predict the texture parameters and the total soluble solids content (TSS) in intact berries. The multivariate models obtained by building artificial neural networks (ANNs) and applying p...
Autores principales: | Basile, Teodora, Marsico, Antonio Domenico, Perniola, Rocco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8834220/ https://www.ncbi.nlm.nih.gov/pubmed/35159433 http://dx.doi.org/10.3390/foods11030281 |
Ejemplares similares
-
NIR Analysis of Intact Grape Berries: Chemical and Physical Properties Prediction Using Multivariate Analysis
por: Basile, Teodora, et al.
Publicado: (2021) -
FT-NIR Analysis of Intact Table Grape Berries to Understand Consumer Preference Driving Factors
por: Basile, Teodora, et al.
Publicado: (2020) -
Prediction of Sensory Parameters of Cured Ham: A Study of the Viability of the Use of NIR Spectroscopy and Artificial Neural Networks
por: Hernández-Ramos, Pedro, et al.
Publicado: (2020) -
Native Vineyard Non-Saccharomyces Yeasts Used for Biological Control of Botrytis cinerea in Stored Table Grape
por: Marsico, Antonio Domenico, et al.
Publicado: (2021) -
Nitrogen Concentration Estimation in Tomato Leaves by VIS-NIR Non-Destructive Spectroscopy
por: Ulissi, Valentina, et al.
Publicado: (2011)