Cargando…

A Low Dose Combination of Withaferin A and Caffeic Acid Phenethyl Ester Possesses Anti-Metastatic Potential In Vitro: Molecular Targets and Mechanisms

SIMPLE SUMMARY: Cancer therapy suffers from its high cost and high rate of adverse effects and relapse of the disease. Hence, the new (preferably natural), economic and safer therapeutic as well preventive measures have been on demand and have been subject of priority research. We have, earlier, dem...

Descripción completa

Detalles Bibliográficos
Autores principales: Sari, Anissa Nofita, Dhanjal, Jaspreet Kaur, Elwakeel, Ahmed, Kumar, Vipul, Meidinna, Hazna Noor, Zhang, Huayue, Ishida, Yoshiyuki, Terao, Keiji, Sundar, Durai, Kaul, Sunil C., Wadhwa, Renu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8834371/
https://www.ncbi.nlm.nih.gov/pubmed/35159054
http://dx.doi.org/10.3390/cancers14030787
Descripción
Sumario:SIMPLE SUMMARY: Cancer therapy suffers from its high cost and high rate of adverse effects and relapse of the disease. Hence, the new (preferably natural), economic and safer therapeutic as well preventive measures have been on demand and have been subject of priority research. We have, earlier, demonstrated anticancer activity in the extracts of Ashwagandha leaves and propolis. A combination of Wi-A (an active anticancer ingredient in Ashwagandha extract) and CAPE (an active anticancer ingredient in propolis) was earlier shown to offer higher and cancer cell-selective cytotoxicity. In the present study, we report an anti-metastasis activity in the low dose combination of Wi-A and CAPE along with its mechanism of action and propose its use in cancer metastasis treatment. ABSTRACT: Withaferin A (Wi-A) and Caffeic Acid Phenethyl Ester (CAPE) are the bioactive ingredients of Ashwagandha (Withania somnifera) and propolis, respectively. Both of these natural compounds have been shown to possess anticancer activity. In the present study, we recruited a low dose of each of these compounds and developed a combination that exhibited remarkably potent anti-migratory and anti-angiogenic activities. Extensive molecular analyses including a cDNA array and expression analyses of the specific gene targets demonstrated that such activities are mediated through their effect on cell adhesion/tight junction proteins (Claudins, E-cadherin), inhibition of canonical Wnt/β-catenin signaling pathways and the consequent downregulation of EMT-signaling proteins (Vimentin, MMPs, VEGF and VEGFR) that play a critical role in cancer metastasis. The data supported that this novel combination of Wi-A and CAPE (Wi-ACAPE, containing 0.5 µM of Wi-A and 10 µM of CAPE) may be recruited for the treatment of metastatic and aggressive cancers and, hence, warrant further evaluation by recruiting a variety of experimental and clinical metastatic models.