Cargando…
Protein Lipidation by Palmitate Controls Macrophage Function
Macrophages are present in all tissues within our body, where they promote tissue homeostasis by responding to microenvironmental triggers, not only through clearance of pathogens and apoptotic cells but also via trophic, regulatory, and repair functions. To accomplish these divergent functions, tre...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8834383/ https://www.ncbi.nlm.nih.gov/pubmed/35159374 http://dx.doi.org/10.3390/cells11030565 |
_version_ | 1784649173739503616 |
---|---|
author | Guns, Jeroen Vanherle, Sam Hendriks, Jerome J. A. Bogie, Jeroen F. J. |
author_facet | Guns, Jeroen Vanherle, Sam Hendriks, Jerome J. A. Bogie, Jeroen F. J. |
author_sort | Guns, Jeroen |
collection | PubMed |
description | Macrophages are present in all tissues within our body, where they promote tissue homeostasis by responding to microenvironmental triggers, not only through clearance of pathogens and apoptotic cells but also via trophic, regulatory, and repair functions. To accomplish these divergent functions, tremendous dynamic fine-tuning of their physiology is needed. Emerging evidence indicates that S-palmitoylation, a reversible post-translational modification that involves the linkage of the saturated fatty acid palmitate to protein cysteine residues, directs many aspects of macrophage physiology in health and disease. By controlling protein activity, stability, trafficking, and protein–protein interactions, studies identified a key role of S-palmitoylation in endocytosis, inflammatory signaling, chemotaxis, and lysosomal function. Here, we provide an in-depth overview of the impact of S-palmitoylation on these cellular processes in macrophages in health and disease. Findings discussed in this review highlight the therapeutic potential of modulators of S-palmitoylation in immunopathologies, ranging from infectious and chronic inflammatory disorders to metabolic conditions. |
format | Online Article Text |
id | pubmed-8834383 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88343832022-02-12 Protein Lipidation by Palmitate Controls Macrophage Function Guns, Jeroen Vanherle, Sam Hendriks, Jerome J. A. Bogie, Jeroen F. J. Cells Review Macrophages are present in all tissues within our body, where they promote tissue homeostasis by responding to microenvironmental triggers, not only through clearance of pathogens and apoptotic cells but also via trophic, regulatory, and repair functions. To accomplish these divergent functions, tremendous dynamic fine-tuning of their physiology is needed. Emerging evidence indicates that S-palmitoylation, a reversible post-translational modification that involves the linkage of the saturated fatty acid palmitate to protein cysteine residues, directs many aspects of macrophage physiology in health and disease. By controlling protein activity, stability, trafficking, and protein–protein interactions, studies identified a key role of S-palmitoylation in endocytosis, inflammatory signaling, chemotaxis, and lysosomal function. Here, we provide an in-depth overview of the impact of S-palmitoylation on these cellular processes in macrophages in health and disease. Findings discussed in this review highlight the therapeutic potential of modulators of S-palmitoylation in immunopathologies, ranging from infectious and chronic inflammatory disorders to metabolic conditions. MDPI 2022-02-06 /pmc/articles/PMC8834383/ /pubmed/35159374 http://dx.doi.org/10.3390/cells11030565 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Guns, Jeroen Vanherle, Sam Hendriks, Jerome J. A. Bogie, Jeroen F. J. Protein Lipidation by Palmitate Controls Macrophage Function |
title | Protein Lipidation by Palmitate Controls Macrophage Function |
title_full | Protein Lipidation by Palmitate Controls Macrophage Function |
title_fullStr | Protein Lipidation by Palmitate Controls Macrophage Function |
title_full_unstemmed | Protein Lipidation by Palmitate Controls Macrophage Function |
title_short | Protein Lipidation by Palmitate Controls Macrophage Function |
title_sort | protein lipidation by palmitate controls macrophage function |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8834383/ https://www.ncbi.nlm.nih.gov/pubmed/35159374 http://dx.doi.org/10.3390/cells11030565 |
work_keys_str_mv | AT gunsjeroen proteinlipidationbypalmitatecontrolsmacrophagefunction AT vanherlesam proteinlipidationbypalmitatecontrolsmacrophagefunction AT hendriksjeromeja proteinlipidationbypalmitatecontrolsmacrophagefunction AT bogiejeroenfj proteinlipidationbypalmitatecontrolsmacrophagefunction |