Cargando…

The Impact of Background-Level Carboxylated Single-Walled Carbon Nanotubes (SWCNTs−COOH) on Induced Toxicity in Caenorhabditis elegans and Human Cells

Single-walled carbon nanotubes (SWCNTs) are widely utilized for industrial, biomedical, and environmental purposes. The toxicity of Carboxylated SWCNTs (SWCNTs−COOH) in in vivo models, particularly Caenorhabditis elegans (C. elegans), and in vitro human cells is still unclear. In this study, C. eleg...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Jian-He, Hou, Wen-Che, Tsai, Ming-Hsien, Chang, Yu-Ting, Chao, How-Ran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8834598/
https://www.ncbi.nlm.nih.gov/pubmed/35162241
http://dx.doi.org/10.3390/ijerph19031218
Descripción
Sumario:Single-walled carbon nanotubes (SWCNTs) are widely utilized for industrial, biomedical, and environmental purposes. The toxicity of Carboxylated SWCNTs (SWCNTs−COOH) in in vivo models, particularly Caenorhabditis elegans (C. elegans), and in vitro human cells is still unclear. In this study, C. elegans was used to study the effects of SWCNTs−COOH on lethality, lifespan, growth, reproduction, locomotion, reactive oxygen species (ROS) generation, and the antioxidant system. Our data show that exposure to ≥1 μg·L(−1) SWCNTs−COOH could induce toxicity in nematodes that affects lifespan, growth, reproduction, and locomotion behavior. Moreover, the exposure of nematodes to SWCNTs−COOH induced ROS generation and the alteration of antioxidant gene expression. SWCNTs−COOH induced nanotoxic effects at low dose of 0.100 or 1.00 μg·L(−1), particularly for the expression of antioxidants (SOD-3, CTL-2 and CYP-35A2). Similar nanotoxic effects were found in human cells. A low dose of SWCNTs−COOH induced ROS generation and increased the expression of catalase, MnSOD, CuZnSOD, and SOD-2 mRNA but decreased the expression of GPX-2 and GPX-3 mRNA in human monocytes. These findings reveal that background-level SWCNTs−COOH exerts obvious adverse effects, and C. elegans is a sensitive in vivo model that can be used for the biological evaluation of the toxicity of nanomaterials.