Cargando…

Gene Editing with CRISPR/Cas Methodology and Thyroid Cancer: Where Are We?

SIMPLE SUMMARY: The advent of genomic editing with CRISPR/Cas9 has transformed the way we manipulate the genome, and has facilitated the investigation of tumor cell biology in vitro and in vivo. Not only we can modify genome sequence to blunt an overactivated gene or correct a mutation, but also we...

Descripción completa

Detalles Bibliográficos
Autores principales: Fuziwara, Cesar Seigi, de Mello, Diego Claro, Kimura, Edna Teruko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8834610/
https://www.ncbi.nlm.nih.gov/pubmed/35159110
http://dx.doi.org/10.3390/cancers14030844
Descripción
Sumario:SIMPLE SUMMARY: The advent of genomic editing with CRISPR/Cas9 has transformed the way we manipulate the genome, and has facilitated the investigation of tumor cell biology in vitro and in vivo. Not only we can modify genome sequence to blunt an overactivated gene or correct a mutation, but also we may modulate gene expression using CRISPR/Cas system. In this review, we present the basics of CRISPR/Cas methodology, its components and how to start a CRISPR/Cas experiment; Moreover, we present how CRISPR/Cas methodology has been applied to study the function of coding and noncoding genes in thyroid cancer and provided insights into cancer biology. ABSTRACT: Important advances on the role of genetic alterations in thyroid cancer have been achieved in the last two decades. One key reason is linked to the development of technical approaches that allowed for the mimicking of genetic alterations in vitro and in vivo and, more recently, the gene editing methodology. The CRISPR/Cas methodology has emerged as a tangible tool for editing virtually any DNA sequence in the genome. To induce a double-strand break and programmable gene editing, Cas9 endonuclease is guided by a single-guide RNA (sgRNA) that is complementary to the target sequence in DNA. The gene editing per se occurs as the cells repair the broken DNA and may erroneously change the original DNA sequence. In this review, we explore the principles of the CRISPR/Cas system to facilitate an understanding of the mainstream technique and its applications in gene editing. Furthermore, we explored new applications of CRISPR/Cas for gene modulation without changing the DNA sequence and provided a Dry Lab experience for those who are interested in starting “CRISPRing” any given gene. In the last section, we will discuss the progress in the knowledge of thyroid cancer biology fostered by the CRISPR/Cas gene editing tools.