Cargando…

Heat and Light Stability of Pumpkin-Based Carotenoids in a Photosensitive Food: A Carotenoid-Coloured Beverage

This study aimed to evaluate carotenoid degradation kinetics in a beverage coloured with pumpkin juice concentrate during storage at dark and illuminated conditions at four temperatures (10, 20, 35 and 45 °C). Carotenoids were quantified by HPLC-DAD, and kinetic parameters for carotenoid degradation...

Descripción completa

Detalles Bibliográficos
Autores principales: Atencio, Sharmaine, Verkempinck, Sarah H. E., Reineke, Kai, Hendrickx, Marc, Van Loey, Ann
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8834637/
https://www.ncbi.nlm.nih.gov/pubmed/35159635
http://dx.doi.org/10.3390/foods11030485
Descripción
Sumario:This study aimed to evaluate carotenoid degradation kinetics in a beverage coloured with pumpkin juice concentrate during storage at dark and illuminated conditions at four temperatures (10, 20, 35 and 45 °C). Carotenoids were quantified by HPLC-DAD, and kinetic parameters for carotenoid degradation were estimated by one-step nonlinear regression analysis. During dark storage, degradation kinetics was modelled by fractional conversion (all-trans-β-carotene) and zero-order equations (all-trans-antheraxanthin, all-trans-lutein, all-trans-violaxanthin and all-trans-neoxanthin). Storage of samples in a climatic chamber with intense light intensity (1875–3000 lux) accelerated the carotenoid losses. At illuminated conditions, degradation followed a first-order (all-trans-lutein, all-trans-violaxanthin and all-trans-neoxanthin) and fractional conversion model (all-trans-β-carotene and all-trans-antheraxanthin). Carotenoid degradation followed an Arrhenius temperature-dependency, with [Formula: see text] values lower than 50 kJ/mol. Degradation was shown to be mainly by oxidative reactions. Packaging under minimal oxygen conditions, use of antioxidants (e.g., ascorbic acid), and proper choice of light sources at retail shelves may be considered to optimize the pigment retention in a carotenoid-coloured beverage during storage.