Cargando…
Assessment of Bi-Ventricular and Bi-Atrial Areas Using Four-Chamber Cine Cardiovascular Magnetic Resonance Imaging: Fully Automated Segmentation with a U-Net Convolutional Neural Network
Four-chamber (4CH) cine cardiovascular magnetic resonance imaging (CMR) facilitates simultaneous evaluation of cardiac chambers; however, manual segmentation is time-consuming and subjective in practice. We evaluated deep learning based on a U-Net convolutional neural network (CNN) for fully automat...
Autores principales: | Arai, Hideo, Kawakubo, Masateru, Sanui, Kenichi, Iwamoto, Ryoji, Nishimura, Hiroshi, Kadokami, Toshiaki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8834677/ https://www.ncbi.nlm.nih.gov/pubmed/35162424 http://dx.doi.org/10.3390/ijerph19031401 |
Ejemplares similares
-
Assessing myocardial circumferential strain using cardiovascular magnetic resonance after magnetic resonance-conditional cardiac resynchronization therapy
por: Arai, Hideo, et al.
Publicado: (2020) -
Differentiation between mild and severe myocarditis using multiparametric cardiac magnetic resonance
por: Arai, Hideo, et al.
Publicado: (2023) -
Superconductivity on a Bi Square Net in LiBi
por: Górnicka, Karolina, et al.
Publicado: (2020) -
3D bi-directional transformer U-Net for medical image segmentation
por: Fu, Xiyao, et al.
Publicado: (2023) -
Automatic detection of COVID-19 disease using U-Net architecture based fully convolutional network
por: Kalane, Prasad, et al.
Publicado: (2021)