Cargando…
Predicting Ovarian-Cancer Burden in Catalonia by 2030: An Age–Period–Cohort Modelling
Ovarian cancer is the most lethal gynaecological cancer in very-high-human-development-index regions. Ovarian cancer incidence and mortality rates are estimated to globally rise by 2035, although incidence and mortality rates depend on the region and prevalence of the associated risk factors. The ai...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8834772/ https://www.ncbi.nlm.nih.gov/pubmed/35162436 http://dx.doi.org/10.3390/ijerph19031404 |
_version_ | 1784649266101223424 |
---|---|
author | Peremiquel-Trillas, Paula Frias-Gomez, Jon Alemany, Laia Ameijide, Alberto Vilardell, Mireia Marcos-Gragera, Rafael Paytubi, Sònia Ponce, Jordi Martínez, José Manuel Pineda, Marta Brunet, Joan Matías-Guiu, Xavier Carulla, Marià Galceran, Jaume Izquierdo, Ángel Borràs, Josep M. Costas, Laura Clèries, Ramon |
author_facet | Peremiquel-Trillas, Paula Frias-Gomez, Jon Alemany, Laia Ameijide, Alberto Vilardell, Mireia Marcos-Gragera, Rafael Paytubi, Sònia Ponce, Jordi Martínez, José Manuel Pineda, Marta Brunet, Joan Matías-Guiu, Xavier Carulla, Marià Galceran, Jaume Izquierdo, Ángel Borràs, Josep M. Costas, Laura Clèries, Ramon |
author_sort | Peremiquel-Trillas, Paula |
collection | PubMed |
description | Ovarian cancer is the most lethal gynaecological cancer in very-high-human-development-index regions. Ovarian cancer incidence and mortality rates are estimated to globally rise by 2035, although incidence and mortality rates depend on the region and prevalence of the associated risk factors. The aim of this study is to assess changes in incidence and mortality of ovarian cancer in Catalonia by 2030. Bayesian autoregressive age–period–cohort models were used to predict the burden of OC incidence and mortality rates for the 2015–2030 period. Incidence and mortality rates of ovarian cancer are expected to decline in Catalonia by 2030 in women ≥ 45 years of age. A decrease in ovarian-cancer risk was observed with increasing year of birth, with a rebound in women born in the 1980s. A decrease in mortality was observed for the period of diagnosis and period of death. Nevertheless, ovarian-cancer mortality remains higher among older women compared to other age groups. Our study summarizes the most plausible scenario for ovarian-cancer changes in terms of incidence and mortality in Catalonia by 2030, which may be of interest from a public health perspective for policy implementation. |
format | Online Article Text |
id | pubmed-8834772 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88347722022-02-12 Predicting Ovarian-Cancer Burden in Catalonia by 2030: An Age–Period–Cohort Modelling Peremiquel-Trillas, Paula Frias-Gomez, Jon Alemany, Laia Ameijide, Alberto Vilardell, Mireia Marcos-Gragera, Rafael Paytubi, Sònia Ponce, Jordi Martínez, José Manuel Pineda, Marta Brunet, Joan Matías-Guiu, Xavier Carulla, Marià Galceran, Jaume Izquierdo, Ángel Borràs, Josep M. Costas, Laura Clèries, Ramon Int J Environ Res Public Health Article Ovarian cancer is the most lethal gynaecological cancer in very-high-human-development-index regions. Ovarian cancer incidence and mortality rates are estimated to globally rise by 2035, although incidence and mortality rates depend on the region and prevalence of the associated risk factors. The aim of this study is to assess changes in incidence and mortality of ovarian cancer in Catalonia by 2030. Bayesian autoregressive age–period–cohort models were used to predict the burden of OC incidence and mortality rates for the 2015–2030 period. Incidence and mortality rates of ovarian cancer are expected to decline in Catalonia by 2030 in women ≥ 45 years of age. A decrease in ovarian-cancer risk was observed with increasing year of birth, with a rebound in women born in the 1980s. A decrease in mortality was observed for the period of diagnosis and period of death. Nevertheless, ovarian-cancer mortality remains higher among older women compared to other age groups. Our study summarizes the most plausible scenario for ovarian-cancer changes in terms of incidence and mortality in Catalonia by 2030, which may be of interest from a public health perspective for policy implementation. MDPI 2022-01-27 /pmc/articles/PMC8834772/ /pubmed/35162436 http://dx.doi.org/10.3390/ijerph19031404 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Peremiquel-Trillas, Paula Frias-Gomez, Jon Alemany, Laia Ameijide, Alberto Vilardell, Mireia Marcos-Gragera, Rafael Paytubi, Sònia Ponce, Jordi Martínez, José Manuel Pineda, Marta Brunet, Joan Matías-Guiu, Xavier Carulla, Marià Galceran, Jaume Izquierdo, Ángel Borràs, Josep M. Costas, Laura Clèries, Ramon Predicting Ovarian-Cancer Burden in Catalonia by 2030: An Age–Period–Cohort Modelling |
title | Predicting Ovarian-Cancer Burden in Catalonia by 2030: An Age–Period–Cohort Modelling |
title_full | Predicting Ovarian-Cancer Burden in Catalonia by 2030: An Age–Period–Cohort Modelling |
title_fullStr | Predicting Ovarian-Cancer Burden in Catalonia by 2030: An Age–Period–Cohort Modelling |
title_full_unstemmed | Predicting Ovarian-Cancer Burden in Catalonia by 2030: An Age–Period–Cohort Modelling |
title_short | Predicting Ovarian-Cancer Burden in Catalonia by 2030: An Age–Period–Cohort Modelling |
title_sort | predicting ovarian-cancer burden in catalonia by 2030: an age–period–cohort modelling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8834772/ https://www.ncbi.nlm.nih.gov/pubmed/35162436 http://dx.doi.org/10.3390/ijerph19031404 |
work_keys_str_mv | AT peremiqueltrillaspaula predictingovariancancerburdenincataloniaby2030anageperiodcohortmodelling AT friasgomezjon predictingovariancancerburdenincataloniaby2030anageperiodcohortmodelling AT alemanylaia predictingovariancancerburdenincataloniaby2030anageperiodcohortmodelling AT ameijidealberto predictingovariancancerburdenincataloniaby2030anageperiodcohortmodelling AT vilardellmireia predictingovariancancerburdenincataloniaby2030anageperiodcohortmodelling AT marcosgragerarafael predictingovariancancerburdenincataloniaby2030anageperiodcohortmodelling AT paytubisonia predictingovariancancerburdenincataloniaby2030anageperiodcohortmodelling AT poncejordi predictingovariancancerburdenincataloniaby2030anageperiodcohortmodelling AT martinezjosemanuel predictingovariancancerburdenincataloniaby2030anageperiodcohortmodelling AT pinedamarta predictingovariancancerburdenincataloniaby2030anageperiodcohortmodelling AT brunetjoan predictingovariancancerburdenincataloniaby2030anageperiodcohortmodelling AT matiasguiuxavier predictingovariancancerburdenincataloniaby2030anageperiodcohortmodelling AT carullamaria predictingovariancancerburdenincataloniaby2030anageperiodcohortmodelling AT galceranjaume predictingovariancancerburdenincataloniaby2030anageperiodcohortmodelling AT izquierdoangel predictingovariancancerburdenincataloniaby2030anageperiodcohortmodelling AT borrasjosepm predictingovariancancerburdenincataloniaby2030anageperiodcohortmodelling AT costaslaura predictingovariancancerburdenincataloniaby2030anageperiodcohortmodelling AT cleriesramon predictingovariancancerburdenincataloniaby2030anageperiodcohortmodelling |