Cargando…

The Life Histories of Intermediate Hosts and Parasites of Schistosoma haematobium and Schistosoma mansoni in the White Nile River, Sudan

Background: The epidemiology of schistosomiasis transmission varies depending on the circumstances of the surrounding water bodies and human behaviors. We aimed to explore cercarial emergence patterns from snails that are naturally affected by human schistosomiasis and non-human trematodes. In addit...

Descripción completa

Detalles Bibliográficos
Autores principales: Ismail, Hassan Ahmed Hassan Ahmed, Ahmed, Abed el Aziz Abed el Rahim Mohamed, Cha, Seungman, Jin, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8835159/
https://www.ncbi.nlm.nih.gov/pubmed/35162527
http://dx.doi.org/10.3390/ijerph19031508
Descripción
Sumario:Background: The epidemiology of schistosomiasis transmission varies depending on the circumstances of the surrounding water bodies and human behaviors. We aimed to explore cercarial emergence patterns from snails that are naturally affected by human schistosomiasis and non-human trematodes. In addition, this study aimed to explore how schistosomiasis infection affects snail survival, reproduction, and growth. Methods: We measured the survival rate, fecundity, and size of Biomphalaria pfeifferi snails and the cercarial rhythmicity of S. haematobium and S. mansoni. The number of egg masses, eggs per egg mass, and snail deaths were counted for 7 weeks. The survival rate and cumulative hazard were assessed for infected and non-infected snails. Results: S. haematobium and S. mansoni cercariae peaked at 9:00–11:00 a.m. Infection significantly reduced the survival rate of B. pfeifferi, which was 35% and 51% for infected and non-infected snails, respectively (p = 0.02), at 7 weeks after infection. The hazard ratio of death for infected snails compared to non-infected snails was 1.65 (95% confidence interval: 1.35–1.99; p = 0.01). Conclusions: An understanding of the dynamics of schistosomiasis transmission will be helpful for formulating schistosomiasis control and elimination strategies. Cercarial rhythmicity can be reflected in health education, and the reproduction and survival rate of infected snails can be used as parameters for developing disease modeling.