Cargando…
Predicting Continuity of Asthma Care Using a Machine Learning Model: Retrospective Cohort Study
Continuity of care (COC) has been shown to possess numerous health benefits for chronic diseases. Specifically, the establishment of its level can facilitate clinical decision-making and enhanced allocation of healthcare resources. However, the use of a generalizable predictive methodology to determ...
Autores principales: | Tong, Yao, Lin, Beilei, Chen, Gang, Zhang, Zhenxiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8835449/ https://www.ncbi.nlm.nih.gov/pubmed/35162261 http://dx.doi.org/10.3390/ijerph19031237 |
Ejemplares similares
-
Error and Timeliness Analysis for Using Machine Learning to Predict Asthma Hospital Visits: Retrospective Cohort Study
por: Zhang, Xiaoyi, et al.
Publicado: (2022) -
Ranking Rule-Based Automatic Explanations for Machine Learning Predictions on Asthma Hospital Encounters in Patients With Asthma: Retrospective Cohort Study
por: Zhang, Xiaoyi, et al.
Publicado: (2021) -
Developing a Machine Learning Model to Predict Severe Chronic Obstructive Pulmonary Disease Exacerbations: Retrospective Cohort Study
por: Zeng, Siyang, et al.
Publicado: (2022) -
Predictive model for difficult laryngoscopy using machine learning: retrospective cohort study
por: Kim, Jong Ho, et al.
Publicado: (2021) -
Development of childhood asthma prediction models using machine learning approaches
por: Kothalawala, Dilini M., et al.
Publicado: (2021)